

December 2008

NASA/TM-2008-215550

Guidance and Control Software Project Data
Volume 1: Planning Documents

Edited by
Kelly J. Hayhurst
Langley Research Center, Hampton, Virginia

The NASA STI Program Office … in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated

by Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides access
to the NASA STI Database, the largest
collection of aeronautical and space science STI
in the world. The Program Office is also
NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports

of completed research or a major
significant phase of research that present
the results of NASA programs and include
extensive data or theoretical analysis.
Includes compilations of significant
scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of
peer-reviewed formal professional papers,
but having less stringent limitations on
manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.

Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results ... even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home

Page at http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help

Desk at (301) 621-0134

• Phone the NASA STI Help Desk at (301)

621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

December 2008

NASA/TM-2008-215550

Guidance and Control Software Project Data
Volume 1: Planning Documents

Edited by
Kelly J. Hayhurst
Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

iii

Table of Contents

1 INTRODUCTION AND BACKGROUND ON SOFTWARE ERROR STUDIES ...1
2 GUIDANCE AND CONTROL SOFTWARE APPLICATION ..3
3 SOFTWARE LIFE CYCLE PROCESSES AND DOCUMENTATION..5
4 ROLE IN TRAINING...7
5 SUMMARY..7
6 REFERENCES ..8
APPENDIX A: PLAN FOR SOFTWARE ASPECTS OF CERTIFICATION FOR THE
GUIDANCE AND CONTROL SOFTWARE PROJECT ...A-1
A.1 INTRODUCTION ...A-3

A.1.1 OVERVIEW OF THE GCS PROJECT .. A-3
A.1.2 BACKGROUND.. A-4

A.2 OVERVIEW OF THE GUIDANCE AND CONTROL APPLICATION...A-5
A.2.1 SOFTWARE OVERVIEW... A-5

A.3 CERTIFICATION CONSIDERATIONS ...A-8
A.4 SOFTWARE DEVELOPMENT PLAN ..A-8

A.4.1 ORGANIZATIONAL RESPONSIBILITY ... A-9
A.4.2 LIFE CYCLE PROCESSES ... A-11
A.4.3 SOFTWARE LIFE CYCLE DATA ... A-13

A.5 PROJECT MILESTONES AND SCHEDULE...A-14
A.6 CONCLUSION ..A-16
A.7 REFERENCES ..A-16
APPENDIX B: SOFTWARE DEVELOPMENT STANDARDS FOR THE GUIDANCE AND
CONTROL SOFTWARE PROJECT..B-1
B.1 INTRODUCTION ...B-3

B.1.1 THE SOFTWARE DEVELOPMENT PROCESS FOR THE GCS PROJECT ..B-3
B.2 SOFTWARE REQUIREMENTS STANDARDS..B-5

B.2.1 DEVELOPMENT OF THE REQUIREMENTS DOCUMENTATION (METHODS, NOTATIONS, AND
CONSTRAINTS) ..B-5
B.2.2 REVIEW OF THE SOFTWARE REQUIREMENTS ...B-7
B.2.3 DERIVED REQUIREMENTS AND MODIFICATIONS ...B-8

B.3 SOFTWARE DESIGN STANDARDS ...B-8
B.3.1 DESIGN METHODS, RULES, AND TOOLS ..B-9
B.3.2 DESIGN DOCUMENTATION ..B-10

B.4 INSTRUCTIONS TO PROGRAMMERS REGARDING THE TRANSITIONAL DESIGN
PHASE..B-12
B.5 SOFTWARE CODE STANDARDS...B-13

B.5.1 PROGRAMMING LANGUAGE ..B-13
B.5.2 CODE PRESENTATION AND DOCUMENTATION...B-13

B.6 INSTRUCTIONS TO PROGRAMMERS REGARDING THE CODING PHASEB-15
B.7 INSTRUCTIONS TO PROGRAMMERS REGARDING THE INTEGRATION PHASE....................B-16
B.8 INSTRUCTIONS FOR USING CMS ..B-16

iv

B.8.1 CMS DESCRIPTION ...B-17
B.8.2 BASIC CMS COMMANDS...B-19

B.9 PROBLEM AND CHANGE REPORTING ..B-19
B.9.1 PROBLEM REPORTING FOR DEVELOPMENT PRODUCTS..B-20
B.9.2 INSTRUCTIONS FOR PROBLEM AND ACTION REPORTS ...B-21
B.9.3 NUMBER SYSTEM FOR THE PROBLEM AND ACTION REPORTS ...B-23
B.9.4 COMPLETING THE PROBLEM REPORT FORM ..B-27
B.9.5 COMPLETING THE ACTION REPORT FORM...B-28
B.9.6 PROBLEM REPORTING FOR SUPPORT DOCUMENTATION..B-29
B.9.7 COMPLETING THE SUPPORT DOCUMENTATION CHANGE REPORT FORM ...B-31
B.9.8 COMPLETING THE CONTINUATION FORM ..B-31

B.10 COLLECTING EFFORT DATA...B-34
B.11 COMMUNICATION PROTOCOL...B-34

B.11.1 CONVENTIONS FOR COMMUNICATION BETWEEN PROGRAMMERS AND SYSTEM ANALYST......................B-35
B.11.2 GENERAL RULES REGARDING TOPICS AND REPLIES ...B-36
B.11.3 OPTIONAL NOTIFICATION FROM WITHIN VAX NOTES USING MAIL UTILITYB-41
B.11.4 USING TEXT FILES FOR NOTE CREATION ..B-41

B.12 DOCUMENTATION GUIDELINES...B-43
B.13 EFFORT DATA..B-44

B.13.1 INSTRUCTIONS TO THE PROGRAMMERS FOR RECORDING EFFORT ...B-44
B.13.2 INSTRUCTIONS TO THE VERIFICATION ANALYSTS FOR RECORDING EFFORT ...B-46
B.13.3 INSTRUCTIONS TO THE SQA REPRESENTATIVE FOR RECORDING EFFORT ...B-48
B.13.4 INSTRUCTIONS TO THE CONFIGURATION MANAGER FOR RECORDING EFFORT..B-50
B.13.5 INSTRUCTIONS TO THE SYSTEM ANALYST FOR RECORDING EFFORT...B-51

B.14 REFERENCES...B-52
APPENDIX C: SOFTWARE VERIFICATION PLAN FOR THE GUIDANCE AND CONTROL
SOFTWARE PROJECT...C-1
C.1 INTRODUCTION ...C-3
C.2 OVERVIEW OF VERIFICATION ACTIVITIES...C-3
C.3 VERIFICATION METHODS...C-4
C.4 REVIEW AND ANALYSIS ACTIVITIES ...C-5

C.4.1 DESIGN REVIEW OVERVIEW ..C-6
C.4.2 CODE REVIEW OVERVIEW...C-7

C.5 TESTING ACTIVITIES..C-8
C.5.1 TEST CASE SELECTION AND COVERAGE..C-9

C.5.1.1 Requirements-Based Test Coverage..C-9
C.5.1.2 Structure-Based Testing ..C-13

C.5.2 TEST CASE EXECUTION STRATEGY ...C-15
C.5.2.1 Low-Level Testing ...C-15
C.5.2.2 Software Integration Testing ...C-16

C.5.3 TEST OUTPUT REVIEW ..C-16
C.6 VERIFICATION ENVIRONMENT AND TOOLS ...C-17
C.7 TRANSITION CRITERIA...C-17
C.8 REVERIFICATION ACTIVITIES ...C-18
C.9 REQUIREMENTS TRACEABILITY MATRIX ..C-19
C.10 STRUCTURE-BASED TEST TYPE MATRIX..C-22
C.11 REFERENCES ..C-23

v

APPENDIX D: SOFTWARE CONFIGURATION MANAGEMENT PLAN FOR THE GUIDANCE
AND CONTROL SOFTWARE PROJECT..D-1
D.1 INTRODUCTION ...D-5

D.1.1 THE ROLE OF SCM IN THE GCS PROJECT .. D-5
D.2 SCM ENVIRONMENT...D-8

D.2.1 CMS DESCRIPTION .. D-10
D.2.1.1 CMS Libraries... D-12
D.2.1.2 Procedures for Using CMS ... D-13

D.2.2 TEAMWORK ... D-14
D.2.3 OTHER SCM TOOLS... D-14

D.3 SCM ACTIVITIES..D-14
D.3.1 CONFIGURATION IDENTIFICATION.. D-15
D.3.2 BASELINES AND TRACEABILITY ... D-15
D.3.3 PROBLEM AND CHANGE REPORTING.. D-18

D.3.3.1 Problem Reporting for Development Products ... D-19
D.3.3.2 Instructions for Problem and Action Reports.. D-19
D.3.3.3 Number System for the Problem and Action Reports .. D-20
D.3.3.4 Problem Reporting for Support Documentation ... D-21

D.3.4 CHANGE CONTROL... D-22
D.3.5 CHANGE REVIEW ... D-28
D.3.6 CONFIGURATION STATUS ACCOUNTING .. D-29
D.3.7 ARCHIVE, RETRIEVAL AND RELEASE ... D-30
D.3.8 SOFTWARE LOAD CONTROL... D-30

D.4 TRANSITION CRITERIA...D-30
D.5 SCM DATA..D-32
D.6 SUPPLIER CONTROL ..D-32
D.7 COMPLETING THE PROBLEM REPORT FORM ..D-32
D.8 COMPLETING THE ACTION REPORT FORM...D-34
D.9 COMPLETING THE SUPPORT DOCUMENTATION CHANGE REPORT FORM..........................D-34

D.10 COMPLETING THE CONTINUATION FORM .. D-35
D.11 REFERENCES ..D-36
APPENDIX E: SOFTWARE QUALITY ASSURANCE PLAN FOR THE GUIDANCE AND
CONTROL SOFTWARE PROJECT..E-1
E.1 INTRODUCTION ...E-3
E.2 SOFTWARE QUALITY ASSURANCE ENVIRONMENT ..E-3

E.2.1 ORGANIZATION RESPONSIBILITIES ...E-4
E.2.2 SCOPE AND ORGANIZATION OF THE SQA PLAN ..E-5

E.3 SOFTWARE QUALITY ASSURANCE AUTHORITY ..E-5
E.4 SOFTWARE QUALITY ASSURANCE ACTIVITIES ...E-5

E.4.1 REQUIREMENTS PROCESS ..E-5
E.4.1.1 Verification ...E-6
E.4.1.2 Quality Assurance...E-6
E.4.1.3 Transition Criteria..E-6

E.4.2 DESIGN PROCESS...E-6
E.4.2.1 Verification ...E-7
E.4.2.2 Quality Assurance...E-7
E.4.2.3 Transition Criteria...E-7

E.4.3 CODE PROCESS..E-7

vi

E.4.3.1 Verification ...E-7
E.4.3.2 Quality Assurance...E-8
E.4.3.3 Transition Criteria..E-8

E.4.4 INTEGRATION PROCESS ...E-8
E.4.4.1 Requirements-Based Testing ..E-8
E.4.4.2 Structure-Based Testing ...E-9
E.4.4.3 Quality Assurance...E-9
E.4.4.4 Transition Criteria..E-10

E.5 PROBLEM REPORTING AND CORRECTION ..E-10
E.6 CONFIGURATION MANAGEMENT..E-15
E.7 SQA RECORDS...E-16
E.8 SOFTWARE CONFORMITY REVIEW..E-17
E.9 SUPPLIER CONTROLS ..E-17
E.10 REFERENCES...E-17

Abstract

The Guidance and Control Software (GCS) project was the
last in a series of software reliability studies conducted at
Langley Research Center between 1977 and 1994. The technical
results of the GCS project were recorded after the experiment
was completed. Some of the support documentation produced as
part of the experiment, however, is serving an unexpected role
far beyond its original project context. Some of the software used
as part of the GCS project was developed to conform to the
RTCA/DO-178B software standard, "Software Considerations in
Airborne Systems and Equipment Certification," used in the civil
aviation industry. That standard requires extensive
documentation throughout the software development life cycle,
including plans, software requirements, design and source code,
verification cases and results, and configuration management
and quality control data. The project documentation that
includes this information is open for public scrutiny without the
legal or safety implications associated with comparable data
from an avionics manufacturer. This public availability has
afforded an opportunity to use the GCS project documents for
DO-178B training. This report provides a brief overview of the
GCS project, describes the 4-volume set of documents and the
role they are playing in training, and includes the planning
documents from the GCS project.

1 Introduction and Background on Software Error Studies

As the pervasiveness of computer systems has increased, so has the desire and obligation to
establish the reliability of these systems. Reliability estimation and prediction are standard
activities in many engineering projects. For the software aspects of computer systems, however,
reliability estimation and prediction have been topics of dispute, especially for safety-critical
systems. A primary challenge is how to accurately model the failure behavior of software such
that numerical estimates of reliability have sufficient credibility for systems where the probability
of failure needs to be quite small, such as in commercial avionics systems (ref. 1). A second
challenge is how to gather sufficient data to make such estimates. Software reliability models are
not used in the civil aviation industry, for example, because “currently available methods do not
provide results in which confidence can be placed to the level required for this purpose.” (ref. 2)

In an effort to develop methods to credibly assess the reliability of software for safety-critical
avionics applications, Langley Research Center initiated a Software Error Studies program in
1977 (ref. 3). A major focus of those studies was on generating significant quantities of software
failure data through controlled experimentation to better understand software failure processes.
The intent of the Software Error Studies program was to incrementally increase complexity and
realism in a series of experiments so that the final study would have statistically valid results,
representative of actual software development processes.

The Software Error Studies program started with initial investigations by the Aerospace
Corporation to define software reliability measures and data collection requirements (ref. 4-6).

2

Next, Boeing Computer Services (BCS) and the Research Triangle Institute (RTI) conducted
several simple software experiments with aerospace applications including missile tracking,
launch interception, spline function interpolation, Earth satellite calculation, and pitch axis
control (refs. 7-11). The experiment design used in these studies generally involved a number of
programmers (denoted n) who independently generated computer code from a given specification
of the problem to produce n versions of a program. In these experiments, no particular software
development standards or life-cycle models were followed. Because the problems were relatively
small and simple, the versions were compared to a known error-free version of the program to
obtain information on software errors.

Although the initial experiments were small and simplistic compared with real-world avionics
development, they yielded some interesting results that have influenced software reliability
modeling. The BCS and RTI studies showed widely varying error rates for faults. This finding
refuted a common assumption in early software reliability growth models that faults produced
errors at equal rates. These studies also provided evidence of fault interaction where one fault
could mask potentially erroneous behavior from another fault, or where two or more faults
together cause errors when alone they would not. (ref. 12) Additional investigations with n-
version programs (ref. 13) found that points in the input space that cause an error can cluster and
form “error crystals”. Extrapolating this finding to aerospace applications, where input signals
tend to be continuous in nature, the error crystals may manifest themselves as clusters of
successive faults that could have unintended consequences. (ref. 14)

The last project in the Software Error Studies program was the Guidance and Control Software
(GCS) project. It built on the previous experiments in two ways: (1) by requiring that the software
specimens for the experiment be developed in compliance with current software development
standards, and (2) by increasing the complexity of the application problem (ref. 15). At the time
of the GCS project, the RTCA/DO-178B guidelines, "Software Considerations in Airborne
Systems and Equipment Certification," (ref. 2) were the primary standard sanctioned by the
Federal Aviation Administration (FAA) for developing software to be approved for use in
commercial aircraft equipment (ref. 16). The DO-178B document describes objectives and
design considerations to be used for the development of software as well as verification,
configuration management, and quality assurance activities to be performed throughout the
development process. The DO-178B guidelines were selected as the software development
standard to be used for the GCS specimens.

The software application selected for the GCS project, as the title indicates, is a guidance and
control function for controlling the terminal descent trajectory of a planetary lander vehicle. This
terminal descent trajectory is the same fundamental trajectory referred to as the “seven minutes of
terror” in the entry, descent, and landing phase of a planetary mission, such as the recent Phoenix
Mars Lander (ref. 17). For the GCS project, the software requirements were reverse engineered
from a simulation program used to study the probability of success of the original NASA Viking
Lander mission to Mars in the 1970s (ref. 18). It is important to emphasize that the software
requirements documented for the GCS project, while realistic, are not the actual software
requirements used for NASA’s Viking Lander or any other planetary landers.

For the GCS experiment, two1 teams of software engineers were each tasked to independently
design, code, and verify a GCS program, following the software development guidance in DO-
178B, as closely as possible. In addition to those teams, another GCS version was produced,
without the constraint of compliance with DO-178B, to aid development and verification of the
requirements and simulation environment. Once all versions were complete, data on residual

1 The original plan for the GCS project called for three independent teams. Due to funding constraints,
only two teams were able to complete the project.

3

errors was supposed to be collected by running all the versions simultaneously in a simulation
environment, and using any discrepancies among the results of the versions as possible
indications of errors.

Results of the operational simulations and data collection are described in (ref. 15). The
purpose of this report is not to repeat those results, but to disseminate some of the project
documentation that has an unanticipated utility beyond its original project context. The project
documentation of interest is the documentation developed by the teams required to comply with
the DO-178B standard. That standard requires extensive records of all of the software
development life cycle activities. For the GCS project, those records included 18 documents
consisting of life cycle plans, development products including requirements and source code,
verification cases and results, and configuration management and quality control data.
Comparable data from a commercial avionics system would not be available for public review
because of proprietary and other legal considerations. The GCS project documentation is not
subject to those considerations because it is not data from an actual operational, or even
prototype, system. But, the data has sufficient realism to provide a window into the types of
activities and data involved in the production of DO-178 compliant software, which makes the
GCS documentation desirable from a training perspective.

The remainder of this report provides a brief overview of aspects of the GCS project relevant
to using the documentation for training. This information includes a description of the GCS
application, a synopsis of the software development processes used to follow the DO-178B
guidance, and the data that was generated as a result. Because the complete set of compliance
documents is large, the documents have been divided into four sets (planning, development,
verification, and other integral process documents) contained in separate volumes of this report.
Volume 1 includes in Appendices A-E all of the GCS documents generated as part of the
planning process documentation.

2 Guidance and Control Software Application

The requirements for the GCS application focus on two primary functions: (1) to provide
guidance and engine control of the lander vehicle during its terminal phase of descent onto the
planet's surface, and (2) to communicate sensory information to an orbiting platform about the
vehicle and its descent. Figure 1 shows a sketch of the lander vehicle, taken from (ref. 18), noting
the location of the terminal descent propulsion systems.

The guidance package for the lander vehicle contains sensors that obtain information about the
vehicle state and environment, a guidance and control computer, and actuators providing the
thrust necessary for maintaining a safe descent. The vehicle has three accelerometers (one for
each body axis), one Doppler radar with four beams, one altimeter radar, two temperature
sensors, three strapped-down gyroscopes, three opposed pairs of roll engines, three axial thrust
engines, one parachute release actuator, and a touch down sensor. The vehicle has a hexagonal,
box-like shape; three legs and a surface sensing rod protrude from its undersurface.

In general, the requirements for the planetary lander only concern the final descent to the
surface. Figure 2 shows a sketch of the phases of the terminal descent trajectory.

4

Terminal
descent engines
(3)

Leg 3

Leg 2

Leg 1

Propellant
tank (2)

Roll
engines (4)

Terminal
descent engines
(3)

Leg 3

Leg 2

Leg 1

Propellant
tank (2)

Roll
engines (4)

Figure 1. Lander with Terminal Descent Propulsion Systems

Figure 2. A Typical Terminal Descent Trajectory

Parachute Descent

Engines Begin Warm up

Chute Released

Phase 1

Phase 2

Phase 3

zv

y v

yv

x v

xv

x v

xv

xv

zv

z v

zv

zv

zv

yv

yv

yv

yv

Drop Height

Touch Down

Phase 4

x p
y p

z p

(Terminal Descent Begins)

Phase 5

x v

5

After the lander has dropped from orbit, the software controls the engines of the vehicle to the
surface of a planet. The initialization of the GCS starts the sensing of vehicle altitude. When a
predefined engine ignition altitude is sensed by the altimeter radar, the GCS begins guidance and
control of the lander. The axial and roll engines are ignited; while the axial engines are warming
up, the parachute remains connected to the vehicle. During this engine warm-up phase, the
aerodynamics of the parachute dictate the vehicle’s trajectory. Vehicle attitude is maintained by
firing the engines in a throttled-down condition. Once the main engines become hot, the
parachute is released and the GCS performs an attitude correction maneuver and then follows a
controlled acceleration descent until a predetermined velocity-altitude contour is crossed. The
GCS then attempts to maintain the descent of the lander along this predetermined velocity-
altitude contour. The lander descends along this contour until a predefined engine shut off
altitude is reached or touchdown is sensed. After all engines are shut off, the lander free-falls to
the surface.

The software requirements for this guidance and control application are contained in a
document called the Guidance and Control Development Specification (in Volume 2). As
mentioned earlier, the initial requirements for this application were reverse engineered from a
simulation program used to study the probability of success of the original NASA Viking Lander
mission to Mars. Prior to use in the experiment, the requirements were revised to make them
suitable for use in an n-version software experiment. Each of the GCS programs for the
experiment were developed from the same requirements document.

3 Software Life Cycle Processes and Documentation

Having some of the project teams adhere to the DO-178B guidelines as they created a software
version for the experiment was a significant element of the GCS project, requiring the
development and tracking of numerous software engineering artifacts not normally associated
with a software engineering experiment. The purpose of DO-178B is to provide guidelines for
the production of software such that the completed implementation performs its intended function
with a level of confidence in safety satisfactory for airworthiness. Along with the production of
software is the generation of an extensive set of documents recording the production activities.

DO-178B defines software development activities and objectives for the development life
cycle of the software, and the evidence that is needed to show compliance. The life-cycle
processes are divided into planning, development, and integral processes. The planning process
defines and coordinates the software development processes and the integral processes. The
software development processes involve identification of software requirements, software design
and coding, and integration; that is, the development processes directly result in the software
product. Finally, the integral processes function throughout the software development processes
to ensure integrity of the software products. The integral processes include software verification,
configuration management, and quality assurance processes. Section 11 of DO-178B describes
data that should be produced as evidence of performing all of the life cycle process activities (see
Table 1).

For the GCS project, some of this data was common for all of the teams, and other data was
intended to be specific to each team. For example, each team worked with the same plans,
standards, and requirements. Then, each individual team was responsible for independently
developing their own design, code, and corresponding verification data. To distinguish the
versions, each team was assigned a planetary name: Mercury, Venus, and Pluto2.

2 At the time the GCS experiment was conducted, Pluto had not yet been relegated to non-planet status.

6

Table 1. Life Cycle Data

Planning Process
Documents

Development Process
Documents

Integral Process
Documents

• Plan for Software Aspects of
Certification

• Software Development Plan
• Software Verification Plan
• Software Configuration

Management Plan
• Software Quality Assurance

Plan
• Software Requirements

Standards
• Software Design Standards
• Software Code Standards

• Software Requirements Data
• Design Description
• Source Code
• Executable Object Code

• Software Verification Cases and
Procedures

• Software Verification Results
• Software Life Cycle Environment

Configuration Index
• Software Configuration Index
• Problem Reports
• Software Configuration

Management Records
• Software Quality Assurance

Records
• Software Accomplishment

Summary

The DO-178B data associated with the development of the Pluto version of the GCS was
selected for publication. Most of the GCS documents correspond directly with the life cycle data
listed in Table 1. All together, the documentation includes over 1000 pages. So, for
dissemination purposes, the Pluto data was divided into the following 4 subsets:

Volume 1: Planning Documents
• Plan for Software Aspects of Certification of the Guidance and Control Software Project
• Software Configuration Management Plan for the Guidance and Control Software Project
• Software Quality Assurance Plan for the Guidance and Control Software Project
• Software Verification Plan for the Guidance and Control Software Project
• Software Development Standards for the Guidance and Control Software Project

Volume 2: Development Documents
• Guidance and Control Software Development Specification
• Design Description for the Pluto Implementation of the Guidance and Control Software
• Source Code for the Pluto Implementation of the Guidance and Control Software

Volume 3: Verification Documents
• Software Verification Cases and Procedures for the Guidance and Control Software Project
• Software Verification Results for the Pluto Implementation of GCS
• Review Records for the Pluto Implementation of the Guidance and Control Software
• Test Results Logs for the Pluto Implementation of the Guidance and Control Software

7

Volume 4: Other Integral Processes Documents
• Software Accomplishment Summary for the Guidance and Control Software Project
• Software Configuration Index for the Guidance and Control Software Project
• Problem Reports for the Pluto Implementation of the Guidance and Control Software
• Support Documentation Change Reports for the Guidance and Control Software Project
• Configuration Management Records for the Guidance and Control Software Project
• Software Quality Assurance Records for the Guidance and Control Software Project

Appendices A thru E in this volume contain all of the original planning documents for the
GCS Project. The Plan for Software Aspects of Certification, in Appendix A, provides a
comprehensive overview of the GCS Project including an overview of the guidance and control
application, statement of certification considerations, discussion of the software development
plan, and the project milestones and schedule. The Configuration Management Plan, Software
Quality Assurance Plan, and Verification Plan, in Appendices B-D, provide details about the
activities to be conducted to satisfy DO-178B objectives for those processes. Appendix E
contains the Software Development Standards that specify constraints and rules on defining the
software requirements, and designing and coding the software. These standards, along with the
software requirements, set the basis for evaluating actual project results with expected results.

The content of the documents in the appendices has not been altered from the original versions
produced during the project.

4 Role in Training

At the time of the GCS project, there was no publicly available information, such as templates,
or examples, or training courses, to help a novice developer generate the type of evidence that a
certificating authority would expect to see to demonstrate compliance with DO-178B. As
mentioned earlier, compliance data from a real avionics system is not typically available for
public review because of various legal and safety considerations. For example, an avionics
manufacturer would likely consider the design and implementation of a system to be proprietary.
Those considerations do not apply to the data from the GCS project, because neither the
requirements nor the software versions represent an actual system with safety, liability, or other
considerations.

In addition to the availability of data, the GCS requirements and DO-178B compliance data
are sufficiently realistic to serve as an example of a DO-178B project: one that is small enough in
scale to be studied in a training course. The GCS documentation provides a window into the
activities and data produced throughout the development life cycle to comply with DO-178B.
Because the Federal Aviation Administration (FAA) was aware of the GCS project, they
recognized the potential value of the documentation for training. The FAA has designed software
training to include a case study portion that addresses avionics software issues that arise from the
application of the DO-178B guidelines. The case study gives students the opportunity to use
auditing techniques to identify flaws in lifecycle data. Because the GCS data was produced by
novices, there are plenty of flaws to find.

5 Summary

From 1977-1994, NASA Langley Research Center conducted a Software Error Studies
program that generated data that provided insights into the software failure process and into
conducting software engineering experiments as well. The GCS project was the final experiment

8

in that program. A unique feature of the GCS project was the requirement for some of the
software specimens used in the experiment to conform to the RTCA/DO-178B software standard,
"Software Considerations in Airborne Systems and Equipment Certification," used in the civil
aviation industry. The project documentation produced to meet that requirement has had the
unanticipated benefit of serving as case study material in software certification training long after
the conclusion of the original experiment. Volume 1 of this report contains all of the planning
documents from the GCS project. Other volumes of this report contain the rest of the GCS
compliance data including development, verification, configuration management and quality
assurance documents.

6 References

1. Littlewood, Bev, and Strigini, Lorenzo, Software Reliability and Dependability: a Roadmap,
22nd International Conference on Software Engineering, Future of Software Engineering
Track, June 4-11, 2000, Limerick Ireland, pp. 175 – 188.

2. Software Considerations in Airborne Systems and Equipment Certification. Doc. No.
RTCA/DO-178B, RTCA, Inc., Dec. 1, 1992.

3. Finelli, George B.: NASA Software Failure Characterization Experiments. Reliability
Engineering & System Safety, vol. 32, pp. 155–169, 1991.

4. Hecht, H.; Sturm, W. A.; and Tratlner, S.: Reliability Measurement During Software
Development. NASA CR-145205, 1977.

5. Hecht, H.: Measurement Estimation and Prediction of Software Reliability. NASA CR-
145135, 1977.

6. Maxwell, F. D.: The Determination of Measures of Software Reliability. NASA CR-158960,
1978.

7. Nagel, Phyllis M.; and Skrivan, James A.: Software Reliability: Repetitive Run
Experimentation and Modeling. NASA CR-165836, 1982.

8. Nagel, P. M.; Scholz, F. W.; and Skrivan, J. A.: Software Reliability: Additional
Investigation Into Modeling With Replicated Experiments. NASA CR-172378, 1984.

9. Dunham, Janet R.: Experiments in Software Reliability: Life-Critical Applications. IEEE
Transactions on Software Engineering, vol. SE-12, no. 1, Jan. 1986, pp. 110–123.

10. Dunham, J. R.; and Lauterbach, L. A.: An Experiment in Software Reliability Additional
Analyses Using Data From Automated Replications. NASA CR-178395, 1987.

11. Dunham, Janet R.; and Pierce, John L.: An Empirical Study of Flight Control Software
Reliability. NASA CR-178058, 1986.

12. Dunham, Janet R.; and Finelli, George B., Real-Time Software Failure Characterization, IEE
Aerospace and Electronic Systems Magazine, pp. 38-44, November 1990.

13. Ammann, P. and Knight, J.: "Data Diversity: An Approach To Software Fault Tolerance",
Digest of Papers FTCS-17: The 17th Annual International Symposium on Fault Tolerant
Computing, Pittsburg, Pennsylvania, July 1987.

14. Finelli, George B, Results of Software Error-Data Experiments, AIAA/AHS/ASEE Aircraft
Design, Systems and Operations Conference, September 7-9, 1988, Atlanta, Georgia, AIAA-
88-4436.

9

15. Hayhurst, Kelly J., Framework for Small-Scale Experiments in Software Engineering,
Guidance and Control Software Project: Software Engineering Case Study, NASA/TM-
1998-207666, May 1998.

16. Federal Aviation Administration, Advisory Circular, 20-115B, January 11, 1993.

17. Tobin, Kate, NASA Preps for ‘7 Minutes of Terror’ on Mars, May 23, 2008,
http://www.cnn.com/2008/TECH/space/05/23/mars.lander/index.html.

18. Holmberg, Neil A.; Faust, Robert P.; and Holt, H. Milton: Viking ’75 Spacecraft Design and
Test Summary. Volume I—Lander Design. NASA RP-1027, 1980.

A-1

Appendix A: Plan for Software Aspects of Certification for the
Guidance and Control Software Project

Author: Kelly J. Hayhurst, NASA Langley Research Center

This document was produced as part of Guidance and Control Software (GCS) Project conducted at
NASA Langley Research Center. Although some of the requirements for the Guidance and Control
Software application were derived from the NASA Viking Mission to Mars, this document does not
contain data from an actual NASA mission.

A-2

A. Contents

A.1 INTRODUCTION ...A-3

A.1.1 OVERVIEW OF THE GCS PROJECT .. A-3
A.1.2 BACKGROUND.. A-4

A.2 OVERVIEW OF THE GUIDANCE AND CONTROL APPLICATION...A-5
A.2.1 SOFTWARE OVERVIEW... A-5

A.3 CERTIFICATION CONSIDERATIONS ...A-8
A.4 SOFTWARE DEVELOPMENT PLAN ..A-8

A.4.1 ORGANIZATIONAL RESPONSIBILITY ... A-9
A.4.2 LIFE CYCLE PROCESSES ... A-11
A.4.3 SOFTWARE LIFE CYCLE DATA ... A-13

A.5 PROJECT MILESTONES AND SCHEDULE...A-14
A.6 CONCLUSION ..A-16
A.7 REFERENCES ..A-16

A-3

A.1 Introduction

As stated in section 11.1 of the Requirements and Technical Concepts for Aviation
RTCA/DO-178B guidelines, "Software Considerations in Airborne Systems and Equipment
Certification," (ref. A.1) the Plan for Software Aspects of Certification for a project is the primary
means used by the certification authority, namely the Federal Aviation Administration (FAA), for
determining whether an applicant is proposing a software life cycle that is commensurate with the
rigor required for the level of software being developed. To this extent, this document contains
an overview of the Guidance and Control Software (GCS) Project including:

• an overview of the guidance and control application,

• statement of certification considerations,

• discussion of the software development plan, including the software life cycle processes and
corresponding data, and

• the project milestones and schedule.

In an effort to increase our understanding of software, NASA Langley Research Center has
conducted a series of experiments over the past twenty years to generate data to help characterize
the software development process (ref. A.2). With an increased understanding of the failure
behavior of software, improved methods for producing reliable software and assessing reliability
can be developed. The current experiment, the GCS project, was started originally in 1985 at the
Research Triangle Institute (RTI) (ref. A.3) to: (1) collect data on the faults that occur during the
software life cycle, (2) collect data on faults that occur in operational guidance and control
software, and (3) make observations on the effectiveness of life cycle processes that complies
with the DO-178B guidelines. To do this, the GCS project involves the development of two
separate implementations of the GCS where the life cycle activities comply with the RTCA DO-
178B guidelines.

This document presents an overview of the software life cycle activities for this project and
discusses why various development decisions were made, especially with respect to the
experimental nature of this project. Details concerning the integral development processes are
contained in the Software Verification Plan, Software Configuration Management Plan, and
Software Quality Assurance Plan. The following section gives a general overview of the GCS
project.

A.1.1 Overview of the GCS Project

For the GCS project, a GCS implementation is defined to be source code which fulfills the
requirements outlined in the Guidance and Control Software Development Specification (ref.
A.4), commonly referred to as the GCS specification. The development of two implementations
of the GCS will be start from a common specification of the software requirements and proceed
independently through the design, code, and integration processes. A GCS implementation will
run in conjunction with a software simulator that provides input to the implementation based on
an expected usage distribution in the operational environment, provides response modeling for
the guidance and control application, and receives data from the implementation. The GCS
simulator is designed to allow an experimenter to run one or more implementations in a
multitasking environment and collect data on the comparison of the results from multiple
implementations. Certain constraints are incorporated in the software requirements and project

A-4

standards (especially standards regarding communication protocol) due to the nature of the GCS
project.

A.1.2 Background

The first task in the start of the GCS project in 1985 was to develop the software requirements
document for the guidance and control application. The original software requirements for the
guidance and control application were reverse-engineered from a software program written in the
late 1960's to simulate the Viking lander vehicle approaching the surface of the planet Mars (ref.
A.5). Engineers at RTI produced the original requirements document for the guidance and
control software, called the Guidance and Control Software Development Specification.

Since the project started in 1985, the DO-178A guidelines (ref. A.6) were originally used on
the project as a model for the software development process. At RTI, three different
programmer/analyst teams were assigned to develop GCS implementations. Because the GCS
specification had already been generated, the DO-178A guidelines were to be applied to the
development process starting with the design of the software implementations from the existing
specification. The development of three separate implementations of the GCS following the DO-
178A guidelines was started at RTI, along with the documentation of the software development
process required by the DO-178A guidelines. The software development processes for the GCS
project included the following processes:

• software design,

• software coding, and

• integration.

All three RTI-developed implementations of the GCS went through the design and coding
processes and were at various stages of the integration process when they were delivered to
NASA in the spring of 1992. After consultation with the FAA, a decision was made to
extensively review and revise the GCS specification and restart the software development process
under the DO-178B guidelines, which were released in December 1992. Upon delivery to
NASA, new programmer and verification analyst teams were assigned along with support from
new System Analysis, Software Quality Assurance, and Configuration Management personnel.
However, due to resource limitations, only two of the implementations are being developed at
Langley Research Center.

Due to the transitioning of the project from RTI to NASA along with the new focus on the
DO-178B guidelines, the decision was made to revisit some of the original development
activities. The following are the software development processes for the in-house GCS project:

• transitional software requirements development (focusing on the review and modification of
the existing software requirements document),

• transitional software design, (where the existing design for each GCS implementation
developed at RTI will be modified to meet the revised software requirements)

• software coding,

• integration.

The following chapter provides an overview of the GCS application, including a brief
description of the software functions. A full account of the software requirements can be found
in the Guidance and Control Software Development Specification, which serves as the Software
Requirements Data for the GCS project.

A-5

A.2 Overview of the Guidance and Control Application

According to DO-178B, the software requirements process uses the system requirements and
system architecture to develop the high-level requirements for the desired software.
Correspondingly, DO-178B states that the Plan for Software Aspects of Certification should
provide an overview of the system. For the GCS project, however, there is no real system to be
developed nor documentation of real system requirements. The GCS project is solely a research
effort to investigate the faults that occur in the development and operation of software, avionics
applications in particular. The GCS implementations will only be executed in a simulated
operational environment to collect software failure data. Consequently, the GCS project started
with the definition of software requirements for a specific component of a guidance and control
system, namely the terminal descent phase. Without system requirements, certain assumptions
must be made in the development of the software requirements. Without system requirements,
there also is no system safety assessment which is an important aspect of any development
process that needs to comply with the DO-178B guidelines. Lack of system requirements also
impacts the extent to which the project will comply with the DO-178B guidelines since no traces
can be made from the software requirements back to the system requirements and safety
assessment.

A.2.1 Software Overview

The definition of the software requirements for the GCS project focuses on two primary needs
for the software: (a) to provide guidance and engine control of the lander vehicle during its
terminal phase of descent onto the planet's surface and (b) to communicate sensory information to
an orbiting platform about the vehicle and its descent. The lander vehicle to be controlled
includes a guidance package containing sensors which obtain information about the vehicle state,
a guidance and control computer, and actuators providing the thrust necessary for maintaining a
safe descent. The vehicle has three accelerometers (one for each body axis), one Doppler radar
with four beams, one altimeter radar, two temperature sensors, three strapped-down gyroscopes,
three opposed pairs of roll engines, three axial thrust engines, one parachute release actuator, and
a touch down sensor. The vehicle has a hexagonal, box-like shape with three legs and a surface
sensing rod protruding from its undersurface. Figure A.1 shows a sketch of the lander vehicle
during the terminal phase of descent, and Figure A.2 shows an engineering drawing of the vehicle
from three perspectives.

In general, the GCS is designed to control a planetary lander during its final descent to the
planet’s surface. After the lander has dropped from orbit, the software will control the engines of
the vehicle to the surface of a planet. The initialization of the GCS starts the sensing of
vehicle altitude. When a predefined engine ignition altitude is sensed by the altimeter radar,
the GCS begins guidance and control of the lander. The axial and roll engines are ignited; while
the axial engines are warming up, the parachute remains connected to the vehicle. During this
engine warm-up phase, the aerodynamics of the parachute dictate the trajectory followed by the
vehicle. Vehicle attitude is maintained by firing the engines in a throttled-down condition. Once
the main engines become hot, the parachute is released and the GCS performs an attitude
correction maneuver and then follows a controlled acceleration descent until a predetermined
velocity-altitude contour is crossed. The GCS then attempts to maintain the descent of the lander
along this predetermined velocity-altitude contour. The lander descends along this contour until a
predefined engine shut off altitude is reached or touchdown is sensed. After all engines are shut
off, the lander free-falls to the surface.

A-6

Figure A.1. The Lander Vehicle During Descent

Xv

x
p

p

yp

Z

Zv

yv

Figure A.2. Engineering Illustration of the Lander Vehicle

Bottom View
(x out of page)

positive
axial thrust

Side View

xv

(y out of page)

zv

+q
(pitch)

yv Axial Engine (3)

Foot Pad (3)

Roll Engine (3)
positive
roll
thrust

+p
(roll)

Zv

Side View

y

v

v

x

(z into page)

+r
(yaw)

A-7

In general, the GCS is designed to control a planetary lander during its final descent to the
planet’s surface. After the lander has dropped from orbit, the software will control the engines of
the vehicle to the surface of a planet. The initialization of the GCS starts the sensing of vehicle
altitude. When a predefined engine ignition altitude is sensed by the altimeter radar, the GCS
begins guidance and control of the lander. The axial and roll engines are ignited; while the axial
engines are warming up, the parachute remains connected to the vehicle. During this engine
warm-up phase, the aerodynamics of the parachute dictate the trajectory followed by the vehicle.
Vehicle attitude is maintained by firing the engines in a throttled-down condition. Once the main
engines become hot, the parachute is released and the GCS performs an attitude correction
maneuver and then follows a controlled acceleration descent until a predetermined velocity-
altitude contour is crossed. The GCS then attempts to maintain the descent of the lander along
this predetermined velocity-altitude contour. The lander descends along this contour until a
predefined engine shut off altitude is reached or touchdown is sensed. After all engines are shut
off, the lander free-falls to the surface. Figure A.3 shows the phases of the terminal descent
trajectory of the lander.

Figure A.3. A Typical Terminal Descent Trajectory

Parachute
Descent

Engines Begin
Warmup

Chute Released

Phase 1

Phase 2

Phase 3

zv

x v

yv

yv

x v

x v

x v

x
v

x
v

zv

z
v

zv

zv

zv

yv

yv

y
v

y
v

Drop
Height

Touch
Down

Phase 4

x p

y p
zp

(Terminal Descent Begins)

Phase 5

A-8

With the control laws specified in the software requirements, the probability that the lander
will safely land on the planet’s surface should be at least 0.95; that is, given a large number of
simulated trajectories, the lander should successfully land (as opposed to crashing) on the planet’s
surface at least 95% of the time.

The following section concerns the certification aspects regarding this guidance and control
application.

A.3 Certification Considerations

The two primary functions of the GCS are: (1) to provide guidance and engine control of the
lander vehicle during its terminal phase of descent onto the planet's surface and (2) to
communicate sensory information to an orbiting platform about the vehicle and its descent.
Although there is not a system safety assessment for the GCS project, it is assumed that the loss
of either of these functions could cause or contribute to a catastrophic failure condition for the
vehicle. Consequently, the guidance and control application as defined in the GCS specification
is considered to be Level A software, requiring the highest level of effort to show compliance
with the certification requirements. Since the GCS is assumed to be Level A, (as opposed to a
lower level requiring less effort to show compliance), no justification for this rating is provided.

A.4 Software Development Plan

As discussed in chapter A.1, the software development processes for the GCS project consist
of the requirements, design, code, and integration processes, where the project artifacts from the
requirements and design processes are modifications of artifacts produced during the original
effort at RTI. In general, the development processes follow a modified waterfall life cycle model
as shown in Figure A.4.

In this figure, the planning process is shown at the top level, and this process feeds into the
rest of the life cycle activities. Then, the software quality assurance (SQA) process monitors the
rest of the life cycle processes, and the configuration management process controls the artifacts
produced. For each of the four development processes, there is some level of verification
activities. Note that the verification activity in the requirements process only consists of an
informal review of the software requirements document, largely because there is no system
requirements document or safety assessment for the project. After the requirements process, the
remainder of the life cycle activities are intended to comply with DO-178B.

The following section describes the organizational responsibilities for all life cycle activities
and provides more details on the life cycle processes and products.

A-9

Figure A.4. Life Cycle Activities Flow for the GCS Project

Develop
Software

Requirements

Review
& Requirements-

based Testing

Design
Software

Code
Software

Integrate
Modules

Software
Requirements

Software
Design

Units of
Code

Integrated
Code

Review
& Analysis

Informal
Review

Development

Verification

Operational
Code

Requirements-based Testing
Structure-based Testing

Software Quality Assurance

Configuration Management

Planning

Planning Documents: (Development Plan, CM Plan,
Verification Plan, & SQA Plan)
& Project Standards

Test
Cases

Test
Cases

Project Artifact
(Life Cycle Data)

Software Quality
Assurance Process

Verification
Process

Configuration
Management

Process

Development
Process

A.4.1 Organizational Responsibility

The GCS project involves two independent teams, where each team, consisting of a
programmer and verification analyst, is tasked to develop a single GCS implementation according
to the DO-178B guidelines. The two GCS implementations have been assigned planetary names:
Mercury and Pluto. In addition to the programmer and verification analyst teams, other project
personnel are assigned the roles of Software Quality Assurance (SQA) representative, System
Analyst (responsible for the software requirements), and Configuration Manager. Due to resource
limitations, the software integral processes of Software Configuration Management and SQA will
be administered independently across the implementations, but the systems and individuals used
to carry out these processes will be the same. For example, one configuration management
system will store all data items for all implementations, one person will do configuration
management for all implementations, and one person will do SQA for all implementations.
Further, there will not be a certification liaison process for the GCS project. Table A.1 lists the
personnel assigned to the GCS project.

A-10

Note that in a real development project, the SQA representative would be different that the
project leader and would report to a different management organization. However, due to
personnel transfers and limitations on project resources, the same person ultimately was required
to perform both roles.

Table A.1 gives a general overview of the responsibilities of six major project roles.

Table A.1. GCS Project Personnel and Organization

Project Role Responsible
Personnel

Organization Responsibility

Project Leader Kelly Hayhurst System
Validation

Methods Branch
(NASA LaRC)

Managing all of the activities of the GCS project,
including providing planning, technical direction, and
coordination with respect to all life cycle processes,
collecting and analyzing data, and scheduling the major
milestones of the project to meet the goals of the project.

SQA
representative

Kelly Hayhurst Providing confidence that the software life cycle
processes produce software that conforms to its
requirements by assuring that project activities are
performed in compliance with DO-178B and project
standards, as defined in the planning documents.

Configuration
Manager

Laura Smith System
Validation

Methods Branch
(NASA LaRC)

Providing configuration management of all life cycle
data (documentation, design, code, test cases, and
simulator) associated with the development of the GCS
implementations. in accordance with the DO-178B
guidelines and project standards.

System Analyst Bernice Becher System
Validation

Methods Branch
(Lockheed)

Providing expertise regarding the software requirements
for the guidance and control system (described in the
GCS specification) to project participants, and
maintaining the GCS specification in accordance with
the DO-178B guidelines and project standards.

Programmers
Mercury
Programmer

Andy Boney Computer Science
Corp.

Independently developing one implementation of the
guidance and control software according to the GCS
specification, DO-178B

Pluto Programmer Paul Carter Computer Science
Corp.

guidelines, and the Software Development Standards.
This includes the generation of the detailed design
description, source code, and executable object code.

Verification
Analysts

Mercury Analyst Debbie Taylor Computer Science
Corp.

Defining and conducting all of the verification activities
associated with the development of one GCS
implementation according to the

Pluto Analyst Rob Angellatta System
Validation

Methods Branch
(Lockheed)

GCS specification, DO-178B guidelines, and the
Software Development Standards.

Simulator
Operator

Bernice Becher Developing, maintaining, and documenting the GCS
simulator. Also, assists in running experiments.

A-11

Since the two GCS implementations are to proceed independently through the development
process, special constraints have been placed on the level of communication allowed among the
project participants. In particular, the programmers should not communicate with each other
about their implementations, and the verification analysts are not permitted to discuss specific
details about their implementations. The Software Development Standards contains more details
on the communication protocol for all project participants.

A.4.2 Life Cycle Processes

At a high level, the software life cycle processes for the GCS project consist of: the software
planning process, the software development processes, and the integral processes. The software
planning process defines and coordinates the software development processes and the integral
processes. The software development processes are made up of the software requirements,
software design, software coding, and the integration processes; those processes that directly
produce the software product. The integral processes surround the software development
processes to ensure the correctness, control, and integrity of the software products. The integral
processes are the software verification, configuration management, and quality assurance
processes. Table A.2 shows the objectives for each of the life cycle processes based on the tables
in Annex A of DO-178B.

Table A.2. Activities and Products of the Life Cycle Processes

Process Objectives Major Activities Products

Planning Process

Define Development and Integral
Processes

- transition criteria

- life cycle

- project standards

Revise project planning documents
from RTI to comply with DO-178B

Plan for Software Aspects of Certification

Software Development Standards

Software Verification Plan

Software Configuration Management Plan

Software Quality Assurance Plan

Development Process

Define high-level requirements

Define low-level requirements &
software architecture

Develop Source Code

Generate Executable Object Code

Identify derived requirements

Modify GCS specification (high-
level requirements)

Update (RTI-generated) detailed
design descriptions (using
Teamwork)

Develop source code

Revised GCS specification (including any
derived requirements)

Detailed Design Description for Mercury
and Pluto (before Design Review)

Cleanly compiled version of Mercury and
Pluto source code (before review &
testing)

Software Quality Assurance
Process

Assure that development and
integral processes comply with
plans and standards

Conduct Conformity Review

Review all processes and products
for compliance

Participate in design, code, and test
case reviews

Conduct software conformity
review

SQA Records from all reviews for each
implementation

A-12

Table A.2. (cont.) Activities and Products of the Life Cycle Processes

Process Objectives Major Activities Products

Verification Process

Review High-level
requirements

Review low-level
requirements & software
architecture

Review source code

Test coverage of all software
requirements (100%
requirements coverage is
achieved)

Test coverage of software
structure (multiple
condition/decision coverage is
achieved)

Conduct Team Design Inspection

Conduct Team Source Code Inspection

Develop and perform Requirements-based
testing at four levels: unit, subframe,
frame, and trajectory.

Conduct analysis of source code (after
requirements-based testing) to determine if
MC/DC is achieved

Perform Structure-based testing as
necessary to achieve Modified
Condition/Decision Coverage.

Traceability Matrix for software
requirements

Verification Procedures

Post-Design Review Design Description
for Mercury and Pluto

Verification Results for Mercury and Pluto
Design Reviews (including Design to
Requirements Trace)

Code-reviewed version of Mercury and
Pluto source code

Verification Results for Mercury and Pluto
Reviews (including Code to Requirements
Trace)

Requirements-based Test Cases

Structure-based Test Cases

Mercury and Pluto versions that completed
requirements-based testing

Mercury and Pluto versions that completed
structure-based testing

Verification Results for Mercury and Pluto
Testing (including Test case to
Requirements Trace)

Configuration Management
Process

Provide identification for all
configuration items

Provide change control
system

Provide archive and retrieval
services

Define labeling system for all
configuration items

Establish a change control system using
the Code Management System (CMS)

Develop a Problem and Action Reporting
System for Development Products (CC1)
and Support Documentation (CC2)

Define and implement procedures for
archive and retrieval

Document and control software
development environment

Configuration Management Index

Life Cycle Environment Configuration
Index

Configuration Management Records

Completed Problem and Action Reports

Completed Support Documentation
Change Reports

As with all life cycle models, there must be some criteria to indicate when to progress from
one process to the other. The primary transition criteria for the development processes is based on
the completion of the verification of the main products of those processes. Table A.3 gives the
transition criteria for the GCS development processes.

A-13

Table A.3. Transition Criteria for the Software Development Processes

Development Process Inputs Transition Criteria to Next Process

Requirements GCS specification from RTI Informal review of version 2.2 of the GCS
specification and approval by the project leader.

Design version 2.2 of the GCS
specification

Completion of all problem reports from the Design
Review. (SQA approval is required for completion
of problem reports.)

Code Design Description Completion of all problem reports from the Code
Review.

Integration

• Requirements-based
Testing

• Structure-based
Testing

Source Code

Executable Object Code

Requirements-based Test
cases

Review, approval, and successful execution of all
requirements-based test cases

--

Review, approval, and successful execution of all
structure-based test cases.

A.4.3 Software Life Cycle Data

The prime objective of the software development processes for the GCS project is to
independently (within the constraints of the project) develop two implementations of the GCS
and all corresponding life cycle data in compliance with the DO-178B guidelines. The detailed
plans for achieving this objective are given in the following documents: Software Verification
Plan, Software Configuration Management Plan, and Software Quality Assurance Plan. Each of
these planning documents must comply with the DO-178B guidelines and will specify the
following information:

• the inputs to that process, including feedback from other processes,
• the integral process activities,
• the availability of tools, plans, methods, and procedures.

The standards for the development products (requirements, design, and source code) and the
other project documentation are given in the Software Development Standards. The Software
Development Standards also contains a description of tools and methods to be used during
development including requirements and design methods and programming language. Other
fundamental information about project procedures (such as configuration management and
problem reporting) are addressed in the Software Development Standards so that the document
can serve as a single handbook for project participants.

Because both GCS implementations are to follow the same development and integral
processes, only one set of planning documents (Plan for Software Aspects of Certification (which
includes the Software Development Plan), Software Verification Plan, Software Configuration
Management Plan, and Software Quality Assurance Plan) will be developed for the project along
with a single Software Configuration Index. Most of the remaining life cycle data will be
implementation specific. Table A.4 shows the responsible party for the life cycle data that
corresponds with each process.

A-14

Table A.4. Organizational Responsibilities for the Software Life Cycle Activities

Software Life Cycle Process Activities Software Life Cycle Data Organizational

Responsibility
Software Planning Plan for Software Aspects of Certification

Software Development Standards, including the
Software Requirements Standards, Software
Design Standards, and the Software Code
Standards
Software Accomplishment Summary

Project Leader

Software Development

Transitional Software Requirements GCS Specification (Software Requirements Data) System Analyst
Transitional Software Design

Designing the Mercury Implementation Design Description for Mercury Mercury Programmer
Designing the Pluto Implementation Design Description for Pluto Pluto Programmer

Software Coding
Coding the Mercury Implementation Source Code for Mercury Mercury Programmer
Coding the Pluto Implementation Source Code for Pluto Pluto Programmer

Integration

Generating Executable Object Code for
Mercury

Executable Object Code for Mercury Mercury Programmer

Generating Executable Object Code for Pluto Executable Object Code for Pluto Pluto Programmer

Integral

Software Verification Software Verification Plan

Software Verification Procedures &
Requirements-based Test Cases

Mercury & Pluto
Analyst

Verifying the Mercury Implementation Structure-based Test Cases for Mercury
Software Verification Results for Mercury

Mercury Analyst

Verifying the Pluto Implementation Structure-based Test Cases for Pluto
Software Verification Results for Pluto

Pluto Analyst

Configuration Management Software Configuration Management Plan

Software Configuration Index (including the Life
Cycle Environment Configuration Index)
Problem Reports for Mercury and Pluto
Support Documentation Change Reports
Software Configuration Management Records

Configuration Manager

Software Quality Assurance Software Quality Assurance Plan
Software Quality Assurance Records

Software Quality
Assurance

Representative

A.5 Project Milestones and Schedule

Within a real software development project the certification authority would be involved in the
development activities, at least to the extent of having visibility into the development processes as
they progress. Because the GCS project is a research effort, the resources necessary to provide

A-15

interaction between the project and the certification authority are not available. Further, because
this project is not confined by constraints placed on a typical development project that must meet
real production deadlines, a hard deadline schedule will not be produced for this project.
However, the project does have milestones based on the development processes and a proposed
schedule of the major project activities. Table A.5 gives the major project milestones and Table
A.6 gives the project history and proposed schedule.

Because there is no certification liaison process for the GCS project, all project life cycle data
as shown in Table A.4 will be made available to the certification authority at the completion of all
development processes. The SQA representative will conduct a software conformity review upon
project completion prior to submission for certification.

Table A.5. GCS Project Milestones

Project Phase Milestones within each Phase
Requirements Phase • Release version 2.2 of the GCS specification to the programmers
Design Phase • Complete GCS designs to comply with version 2.2 of the GCS

specification
• Conduct Design Reviews
• Complete all modifications to the design identified in Design Reviews
• Initiate development of requirements-based test cases

Code Phase • Develop source code
• Conduct Code Review
• Complete all modifications to the code identified in Code Review

Integration Phase • Complete requirements-based testing
• Complete analysis for Multiple Condition/Decision Coverage
• Complete Structure-based testing as needed

Table A.6. GCS Project History and Schedule

Historical Events: Date
Delivery of GCS life cycle data from Research Triangle Institute 5/92
Meeting with the FAA (DeWalt and Saraceni) to determine direction for project 9/20/92
Review of life cycle data (to determine extent of modifications necessary by LaRC) 9/92

Proposed Schedule of Events:
Complete Modification of the GCS specification (release 2.2) 11/93
Complete Modification and Verification of GCS Designs 6/94
Complete Development and Verification of Source Code 10/94
Complete Development of Requirements-based Test Cases 8/94
Complete Requirements-based Testing 12/94
Complete Structure-based Testing 12/94

A-16

A.6 Conclusion

This document gives all project participants and the certification authority an overview of the
Guidance and Control Software project and the corresponding software life cycle processes and
products. This document is intended to be used in conjunction with the other major planning and
standards document (Software Development Standards, Software Verification Plan, Software
Configuration Management Plan, and Software Quality Assurance Plan) to provide the basis for
all project activities in compliance with DO-178B.

A.7 References

A.1 RTCA Special Committee 152. Software Considerations in Airborne Systems and
Equipment Certification. Technical Report RTCA/DO-178B, Requirements and
Technical Concepts for Aviation, December 1992.

A.2 George B. Finelli. Results of software error-data experiments. In AIAA/AHS/ASEE
Aircraft Design, Systems and Operations Conference, Atlanta, GA, September 1988.

A.3 Janet R. Dunham and George B. Finelli. Real-Time Software Failure Characterization,
COMPASS'90: Proceedings of the Fifth Annual Conference on Computer Assurance,
June 1990.

A.4 B. Edward Withers and Bernice Becher. Guidance and Control Software Development
Specification, NASA Contractor Report (To be published)

A.5 Neil A. Holmberg, Robert P. Faust, and H. Milton Holt. Viking ‘75 Spacecraft Design
and Test Summary, Volume I - Lander Design, NASA Reference Publication 1027,
Langley Research Center, 1980.

A.6 RTCA Special Committee 152. Software Considerations in Airborne Systems and
Equipment Certification. Technical Report RTCA/DO-178A, Radio Technical
Commission for Aeronautics, March 1985.

B-1

Appendix B: Software Development Standards for the Guidance and
Control Software Project

Authors: Kelly J. Hayhurst, NASA Langley Research Center
Bernice Becher, Lockheed Martin Engineering and Sciences Corp.

This document was produced as part of Guidance and Control Software (GCS) Project conducted at
NASA Langley Research Center. Although some of the requirements for the Guidance and Control
Software application were derived from the NASA Viking Mission to Mars, this document does not
contain data from an actual NASA mission.

B-2

B. Contents

B.1 INTRODUCTION ...B-3

B.1.1 THE SOFTWARE DEVELOPMENT PROCESS FOR THE GCS PROJECT ..B-3
B.2 SOFTWARE REQUIREMENTS STANDARDS..B-5

B.2.1 DEVELOPMENT OF THE REQUIREMENTS DOCUMENTATION (METHODS, NOTATIONS, AND
CONSTRAINTS) ..B-5
B.2.2 REVIEW OF THE SOFTWARE REQUIREMENTS ...B-7
B.2.3 DERIVED REQUIREMENTS AND MODIFICATIONS ...B-8

B.3 SOFTWARE DESIGN STANDARDS ...B-8
B.3.1 DESIGN METHODS, RULES, AND TOOLS ..B-9
B.3.2 DESIGN DOCUMENTATION ..B-10

B.4 INSTRUCTIONS TO PROGRAMMERS REGARDING THE TRANSITIONAL DESIGN
PHASE..B-12
B.5 SOFTWARE CODE STANDARDS...B-13

B.5.1 PROGRAMMING LANGUAGE ..B-13
B.5.2 CODE PRESENTATION AND DOCUMENTATION...B-13

B.6 INSTRUCTIONS TO PROGRAMMERS REGARDING THE CODING PHASEB-15
B.7 INSTRUCTIONS TO PROGRAMMERS REGARDING THE INTEGRATION PHASE....................B-16
B.8 INSTRUCTIONS FOR USING CMS ..B-16

B.8.1 CMS DESCRIPTION ...B-17
B.8.2 BASIC CMS COMMANDS...B-19

B.9 PROBLEM AND CHANGE REPORTING ..B-19
B.9.1 PROBLEM REPORTING FOR DEVELOPMENT PRODUCTS..B-20
B.9.2 INSTRUCTIONS FOR PROBLEM AND ACTION REPORTS ...B-21
B.9.3 NUMBER SYSTEM FOR THE PROBLEM AND ACTION REPORTS ...B-23
B.9.4 COMPLETING THE PROBLEM REPORT FORM ..B-27
B.9.5 COMPLETING THE ACTION REPORT FORM...B-28
B.9.6 PROBLEM REPORTING FOR SUPPORT DOCUMENTATION..B-29
B.9.7 COMPLETING THE SUPPORT DOCUMENTATION CHANGE REPORT FORM ...B-31
B.9.8 COMPLETING THE CONTINUATION FORM ..B-31

B.10 COLLECTING EFFORT DATA...B-34
B.11 COMMUNICATION PROTOCOL...B-34

B.11.1 CONVENTIONS FOR COMMUNICATION BETWEEN PROGRAMMERS AND SYSTEM ANALYST......................B-35
B.11.2 GENERAL RULES REGARDING TOPICS AND REPLIES ...B-36
B.11.3 OPTIONAL NOTIFICATION FROM WITHIN VAX NOTES USING MAIL UTILITYB-41
B.11.4 USING TEXT FILES FOR NOTE CREATION ..B-41

B.12 DOCUMENTATION GUIDELINES...B-43
B.13 EFFORT DATA..B-44

B.13.1 INSTRUCTIONS TO THE PROGRAMMERS FOR RECORDING EFFORT ...B-44
B.13.2 INSTRUCTIONS TO THE VERIFICATION ANALYSTS FOR RECORDING EFFORT ...B-46
B.13.3 INSTRUCTIONS TO THE SQA REPRESENTATIVE FOR RECORDING EFFORT ...B-48
B.13.4 INSTRUCTIONS TO THE CONFIGURATION MANAGER FOR RECORDING EFFORT..B-50
B.13.5 INSTRUCTIONS TO THE SYSTEM ANALYST FOR RECORDING EFFORT...B-51

B.14 REFERENCES...B-52

B-3

B.1 Introduction

According to the Requirements and Technical Concepts for Aviation RTCA/DO-178B
document entitled Software Considerations in Airborne Systems and Equipment Certification
(ref. B.2), the purpose of the software development standards is to "define the rules and
constraints for the software development process." To that extent, this document contains the
Guidance and Control Software (GCS) project standards for the development of the software
requirements, software design, and implemented code. These standards include constraints and
rules on defining the software requirements, and designing and coding the software. These
standards, along with the software requirements, will set the basis for evaluating actual project
results with expected results.

This document also contains other project standards including communication protocol among
the project participants and problem and action reporting procedures. It is hoped that this
document will serve as a handbook for the project participants, especially those individuals
responsible for the design and coding of the software. All project participants are expected to
become familiar with and follow the standards set forth in this document. To provide a basis for
understanding the various project standards and procedures, the following section gives an
overview of the GCS project and the software development process.

B.1.1 The Software Development Process for the GCS Project

For the GCS project, a GCS implementation is defined to be code which fulfills the
requirements outlined in the Software Requirements Data, commonly referred to in this project as
the GCS specification. The current GCS project involves the development of separate
implementations of the GCS where the development and verification activities comply with the
RTCA/DO-178B guidelines which are required by the Federal Aviation Administration (FAA)
for developing software to be certified for use in commercial aircraft equipment and with project
standards (as defined in this document). Three of the major purposes of this project are to (1)
collect data on the faults that occur during the software development process, (2) collect data on
faults that occur in operational guidance and control software, and (3) make observations on the
effectiveness of a development process that complies with the DO-178B guidelines. Special
procedures and forms for tracking effort and error data have been developed to capture
information in addition to that required by the DO-178B guidelines. These procedures are
described later in this document.

A GCS implementation will run in conjunction with a software simulator that provides input
based on an expected usage distribution in the operational environment, provides response
modeling, and receives data from the implementation. The GCS simulator is designed to allow
an experimenter to run one or more implementations in a multitasking environment and collect
data on the comparison of the results from multiple implementations. Certain constraints have
been incorporated in the software requirements and project standards (especially standards
regarding communication protocol) due to the nature of the GCS project. Further information on
goals of the GCS project is available in the Plan for Software Aspects of Certification.

The GCS project was started originally at Research Triangle Institute (RTI) (ref. B.1). The
first task in the project was to develop the specification document for the guidance and control
software application. Engineers at RTI produced the original requirements document for the
guidance and control software, called the Guidance and Control Software Development
Specification. The GCS specification contains more than just the software high-level
requirements. The GCS specification embodies high level requirements and some level of
software design. Thus, some of the necessary refinement of the software requirements has

B-4

already been accomplished in the GCS specification. The chapter titled "Software Requirements
Standards" describes the methods used to generate the original GCS requirements document and
overviews the methods used in the original verification effort for the requirements.

Once the GCS specification was generated, a decision was made to have RTI use the DO-
178A guidelines (ref. B.3) as a model for the software development process. Six people were
divided into three different teams of 2 people each to develop three implementations. Each team,
consisting of a programmer and verification analyst, was tasked to develop a single GCS
implementation according to the DO-178A guidelines. The three GCS implementations were
assigned planetary names: Mercury, Earth, and Pluto. The documentation for each
implementation refers to the assigned planetary name. In addition to the programmer and
verification analyst teams, other project personnel were assigned the roles of Software Quality
Assurance (SQA) representative, system analyst (responsible for the software requirements), and
configuration manager to work with the three implementation teams. The Plan for Software
Aspects of Certification contains more details on the role of all project participants.

Because the GCS specification had already been generated, the DO-178A guidelines were to
be applied to the development process starting with the design of the software implementations
from the existing specification. The software development processes used by RTI included the
following processes:

• software design,
• software coding, and
• integration.

All three RTI-developed implementations of the GCS went through the design and coding
processes and were at various stages of the integration process when they were delivered to
NASA. After consultation with the FAA, a decision was made to extensively review and revise
the GCS specification and restart the software development process under the DO-178B
guidelines, which were released very soon after the GCS implementations were delivered. Upon
delivery to NASA, new programmer and verification analyst teams were assigned along with
support from new System Analysis, SQA, and Configuration Management personnel.

Due to the transitioning of the project from RTI to NASA along with new focus on the DO-
178B guidelines, the decision was made to revisit some of the original development activities and
to develop only two implementations. In particular, the following activities are to be
accomplished in addition to the regular life cycle development activities:

1. review and revision of the existing GCS specification, which will result in version 2.2 of
the document,

2. definition of any additional information that needs to be specified to fulfill the
requirements for the Software Requirements Data as described in Subsection 11.9 of DO-
178B,

3. review and revision of the existing documentation describing the software development
process to conform with the guidelines set forth in DO-178B (i.e. revising the RTI-
generated Plan for Software Aspects of Certification, Software Verification Plan,
Software Configuration Management Plan, Software Quality Assurance Plan, and the
Software Development Standards), and

4. modification of each existing design (developed at RTI) by the newly designated
programmer to bring the design up to version 2.2 of the GCS specification.

B-5

Thus, the software development processes for the in-house GCS project will include the
following processes:

• transitional software requirements development (focusing on the review and modification of
the existing software requirements),

• transitional software design,
• software coding, and
• integration.

The following chapter describes the methods used to develop the original GCS specification
and the methods and standards for modifying the requirements. Standards for the design process
are described in the chapter titled "Software Design Standards". The standards for the coding
process are described in the chapter "Software Code Standards". Instructions to the programmers
regarding their role in the various development processes and general purpose instructions to all
project participants for data collection, communication, and configuration management are
discussed in the remaining chapters. Note that there may be changes to various aspects of the
development process (such as the software requirements or project standards) as the project
progresses. New procedures and standards may be issued periodically and project documentation
updated as appropriate.

B.2 Software Requirements Standards

According to DO-178B, the software requirements process uses the system requirements and
system architecture to develop the high-level requirements for the desired software (ref. B.2).
The objectives of this process are to ensure the clarity, consistency, and completeness of those
requirements allocated to the software. For the GCS project, however, there is no real system to
be developed nor documentation of real system requirements. Consequently, there also is no
system safety assessment which is an important aspect of any development process that needs to
comply with the DO-178B guidelines. The GCS project started with the definition of software
requirements for a specific component of a guidance and control system. Without system
requirements, certain assumptions must be made in the development of the software
requirements. Lack of system requirements also impacts the extent to which the project will
comply with the DO-178B guidelines since no traces can be made from the software requirements
back to the system requirements and safety assessment.

The following section describes the development of the original specification for the software,
including the methods, rules, and tools used in the development of the high-level requirements.

B.2.1 Development of the Requirements Documentation (Methods, Notations, and
Constraints)

The original requirements for the guidance and control application were reverse-engineered
during the mid 1980's by engineers at RTI from a software program written in the late 1960's to
simulate the Viking lander vehicle approaching the surface of the planet Mars (ref. B.1). The
definition of the software requirements focused on two primary needs for the software: (a) to
provide guidance and engine control of the lander vehicle during its terminal phase of descent
onto the planet's surface and (b) to communicate sensory information to an orbiting platform
about the vehicle and its descent. As discussed above, the GCS specification embodies high-level
requirements and some level of software design.

The RTI engineers used a version of the structured analysis for real-time system specification
methodology by Hatley and Pirbhai (ref. B.4) to help create the original GCS specification. In

B-6

general, the structured analysis method is based on a hierarchical approach to defining functional
modules and the associated data and control flows. Structured analysis was chosen as the
specification method as opposed to a formal specification language for two reasons: (1) to keep
the specification development activity practical and, (2) to use a specification method which is
currently used in industry (ref. B.5). The Computer Aided Software Engineering (CASE) tool,
teamwork (ref. B.6), was used later in the project to refine some of the data and control flow
diagrams in the GCS specification. Beyond the use of teamwork and the structured analysis
approach to system specification, no constraints were placed on the use of requirements
development tools.

The specification document includes data context and flow diagrams, control and context flow
diagrams, and process and control descriptions. Figure B.1 defines the graphical symbols used in
the specification's data flow and control flow diagrams, respectively. As stated in the GCS
specification, the data flow diagrams describe the processes, data flows, and data and control
stores. The data context diagram is the highest-level data flow diagram and represents the data
flow for the entire software component.

Process Module

External Source or Sink

Data Condition or Control Flow

Control Specification

Data Flow

Data or Control Store

Figure B.1. Graphical Symbols Used in the GCS Specification's Flow Diagrams

The control flow diagrams describe processes, data condition and control signal flows, and

data and control stores. The data condition and control signal flows are depicted using directed
arcs with broken lines and simply show the logic involved in the system. Signal flows between
the control flow diagram and the control specification have a short bar at the end of the directed
arc. The control flow diagrams contain duplicate descriptions of the processes represented on the

B-7

data flow diagram. The control context diagram representing the most abstract control flow is
similar to the data context diagram.

The control specifications describe the control requirements of a system. These specifications
contain the conditions when the processes detailed in the data and control flow diagrams are
activated and de-activated. A Data Requirements Dictionary, containing definitions for both data
and control signals, is also included as part of the GCS specification.

The GCS project is targeted for VAX/VMS systems; that is, the GCS implementations and the
simulator are designed to run on a VAX/VMS system. Consequently, all software requirements,
standards, and instructions for the project assume a VAX/VMS system as the host system for the
GCS implementations. A more detailed description of the software life cycle environment,
including a description of the host operating system, can be found in the Software Configuration
Management Plan .

B.2.2 Review of the Software Requirements

Although formal review, according to the DO-178B guidelines, of the GCS specification is
beyond the scope of the project, steps were taken by RTI during the development of the original
GCS specification to assure that the specification was as complete, precise, and verifiable as
possible. Conducting peer reviews and informal walk-throughs and coding a prototype
implementation were among those steps. During these activities, the changes made to the
specification were recorded and categorized. More discussion on the methods used in the
verification of the original specification is in the GCS Development Specification Review
Description (ref. B.5).

Version 2.0 of the GCS specification, that resulted from those verification activities, was more
than 122 pages of text, including appendices concerning the format of the specification,
implementation notes, background on methods of integration, and a data requirements dictionary.
The GCS specification was written for an experienced programmer with two or more years of
full-time industrial programming experience. The GCS specification was intended to be
implemented using a scientific programming language. In fact, the implementations to be
developed for the GCS project are required to be coded in the FORTRAN language. A
background in mathematics, physics, and numerical integration is considered beneficial in
understanding the software requirements. A similar background is also considered beneficial for
individuals required to verify a GCS implementation. Version 2.0 of the specification was
released to the original programmers at RTI to start the development of their implementations.
Version 2.1 of the specification was later released after a significant number of modifications
were made.

During the transitional requirements development process of the project, version 2.1 of the
software requirements was assessed in light of the DO-178B guidelines, especially with respect to
the required contents of the Software Requirements Data. The Software Requirements Data, as
described in Subsection 11.9 of DO-178B, contains the definition of the high-level requirements
for the software component. After a review of and significant modification to the physics
embodied in the software requirements are accomplished, version 2.2 of the GCS specification,
which is the Software Requirements Data for the purposes of the GCS project, will be released to
the new programmers, signaling the end of the transitional requirements process and the start of
the transitional design process.

B-8

B.2.3 Derived Requirements and Modifications

According to DO-178B, the GCS specification is classified under control category 1 -- which
means that the project must provide a formal system of problem reporting, change control, and
change review for that data. All changes to the GCS specification, along with the other project
support documentation, are made through a system of Support Documentation Change Reports.
All questions raised by any member of the development team regarding the GCS specification are
brought to the system analyst. The system analyst reviews all questions and determines if
changes to the specification are required. When changes are deemed necessary, the system
analyst submits a description of the necessary modification to the SQA representative and project
leader for review. The chapter "Problem and Change Reporting" gives a more detailed
description of the procedures and forms used for tracking, reviewing and approving changes to
the GCS specification.

Once the modification is approved, a copy of the modification description is distributed to all
project participants. The programmers are required to consider the impact of each modification
to the software requirements on their implementation and make any appropriate changes to their
software design and code. Similarly, the verification analysts should determine the impact of any
modifications on the verification activities, especially test cases and requirements in the
traceability data, and make any necessary corrections to the appropriate artifacts.

Derived requirements will be recorded as the verification analysts document the software
requirements and their corresponding verification criteria for the traceability data. The
programmers will also identify requirements derived during the design and coding processes in
their software design descriptions and code, respectively. As derived requirements are identified,
they will be added to the traceability data. Derived requirements will also be added to the
traceability data as they are identified during the review and analysis of the software design and
code, and these requirements will be verified through the remainder of the development
processes. Since there is no system requirements or system safety assessment, there is no other
mechanism other than the traceability data to account for the derived requirements.

The following chapter describes the software design standards defined for the GCS project.

B.3 Software Design Standards

The purpose of the software design process is to refine the software high-level requirements
into a software architecture and the low-level requirements that can be used to implement the
source code. The software design standards are provided to define the methods, rules, and tools
to be used in the development of the software architecture and low-level requirements, as
described in Subsection 11.7 of DO-178B. These standards should enable the software
implementations to be uniformly designed.

During the transitional design process of the GCS project, the programmers are required to
develop detailed software designs from existing GCS designs, as delivered from RTI. A detailed
design should be a complete statement of the software low-level requirements that addresses
exactly what needs to be accomplished in order to fulfill the objectives stated in the GCS
specification; that is, the detailed design should contain an algorithmic solution. The low level
requirements should be directly translatable into source code, with no further decomposition
required.

B-9

B.3.1 Design Methods, Rules, and Tools

For the GCS project, the design of a GCS implementation should be developed using the
structured analysis and design methods described by Hatley and Pirbhai (ref. B.4), DeMarco (ref.
B.7) or Ward and Mellor (ref. B.8). Further, the designer is required to use the Computer Aided
Software Engineering (CASE) tool, teamwork (ref. B.9), to develop the design. Teamwork is a
product of (and registered trademark of) Cadre Technologies, Inc. The teamwork tool is used to
aid in the structured design of the applications, and certain parts of the output from teamwork will
be required for design and code reviews. Teamwork is composed of several tools that are
available to the designer. The components of teamwork include, but are not limited to, the
following components:

SA --- The base-line structured analysis tool,

RT --- An extension of SA that allows description of real-time systems, and

SD --- A parallel tool that follows the Ward and Mellor approach.

The designer may choose to use any of these tools. If the SA tool is chosen, the design will
consist of Data Flow Diagrams (DFDs) that provide a representation of a system focusing on the
data passed between processes and Process Specifications (P-Specs) that provide procedural
descriptions of primitive processes (processes that cannot be further decomposed into more
detailed DFDs). If the RT extension is used, the design will also contain Control Flow Diagrams
(CFDs) and Control Specifications (C-Specs). The CFDs provide an additional representation of
the system focusing on the control and data condition signals passed between processes, and the
C-Specs relate input and output control flows, turn processes on or off, and trigger changes in the
operating mode of the system. If the design is developed with the SD tool, the design will consist
of Structure Charts that depict the partitioning of a system into modules, showing the hierarchy
and organization of these modules and the communication interfaces among them, and Module
Specifications (M-Specs) that describe the function of the modules represented in the design (ref.
B.9). Although the P-Specs and M-Specs contain the detailed description of the algorithms for
the code, these specifications should be limited in length to a) encourage a modular design and
code and b) aid in review and verification. The constraints listed below should be followed when
using teamwork to develop the GCS design.

• No P-Spec, C-Spec, or M-Spec should be greater than five pages in length when printed.
• The body section of the P-Specs and M-Specs may contain any combination of structured

English and pseudo-code to provide a concise and unambiguous description of the process or
module.

• The lists of input and output variables should be directly traceable to the specification. Any
flows should be broken down to the elements as shown in the Data Requirements Dictionary
in the GCS specification before entering the P-Spec, C-Spec, or M-Spec.

• Interrupts may not be used.
• Before printing the copy to be analyzed during the design review, a complete "balance'' check

should be conducted on the model. No changes should be made to the model between the last
"balance'' and the print.

In general each programmer is expected to follow good software engineering practices in the
construction of the design; but, the design standards for this project do not extend beyond the
constraints listed above. For example, no restrictions have been issued on the complexity of the
design, such as limiting the number of nested calls or entry and exit points in the code
components. However, each programmer should be mindful that this project involves the

B-10

development of software that is considered to be Level A software (in the terminology of DO-
178B), where anomalous behavior of the software could cause or contribute to a catastrophic
failure condition for the vehicle. Excessive complexity of the design and code magnify the
difficulty in verification of the software and, hence, could potentially increase the possibility of
faults remaining in the software after verification.

In addition, no other design standards have been defined regarding naming conventions,
scheduling, global data, or exception handling beyond those requirements set forth in the GCS
specification. Although no constraints in terms of project standards have been placed on the use
of event-driven architectures, dynamic tasking, and re-entry, the use of such methods in a GCS
design should be discussed and the rationale for their use clearly explained in the design
documentation. Further, no formal constraints have been placed on the use of recursion, dynamic
objects, data aliases and compacted expressions. However, as stated above, the use of such
techniques should be clearly discussed and justified in the design documentation.

As described in Paragraph 5.2.2 of DO-178B, a Design Description (Subsection 11.10) is a
primary output of the software design process. The following section describes the outline of the
information that should be contained in the design documentation.

B.3.2 Design Documentation

As discussed in Subsection 11.10 of DO-178B, the design description defines the software
architecture and the low-level requirements that satisfy the software high-level requirements. The
design document outline shown below describes the required contents of the detailed design
description for each GCS implementation. This documentation includes introductory and
overview commentary on the design generated with the teamwork tool. The document produced
from this outline will be analyzed during the design review and will also be used to trace changes
in the design to the code. As the software code is developed and modified, the design and the
code will be modified to be kept consistent. Thus, it is important to have a carefully documented
description of the software design.

The design document should follow a format loosely similar to that of the GCS specification
or the Hatley book on real-time system specification (ref. B.4). Note that the outline given here is
a suggested outline and may be rearranged or modified by the programmer as desired. However,
the content of the design document should comply with the requirements stated in DO-178B.

 I. Introduction to Name of implementation

a) Top Level Description

 This subsection should give a brief overview of the context of the application
(e.g., simulates the on-board navigational code for a planetary lander, etc.). This
subsection should also provide a brief overview of the organization of the design.

b) Comments on Method

 This subsection should contain any comments regarding the philosophy or
methods used during the design of the software. The tools used to generate the design
(e.g., teamwork/SA and teamwork/SD) should be specifically stated.

B-11

II. Design Structure

As described in Subsection 11.10 of DO-178B, this portion of the design description should
contain a detailed account of how the software satisfies the specified software high-level
requirements, including algorithms, data structures, and how software requirements are allocated
to processors and tasks. The descriptions of any algorithms used (including those that were not
supplied in the GCS specification) should be contained in the teamwork design. The following
information should be included to provide an overview of the detailed design. The teamwork
design should be included in an appendix.

a) Data and Control Flow

 This section should describe the data flow and control flow of the design.
References should be given to the appropriate teamwork diagrams. Note that the
data and control diagrams may be combined into single diagrams for each level.

b) Module Description

 This section should provide the software architecture and low-level requirements,
developed using the teamwork tool, that satisfy the requirements given in the
GCS specification.

 If the design is developed using the teamwork/SA tool, this subsection should
contain a brief overview of the P-Specs in the design. Each P-Spec and its
primitive process should share the same inputs and outputs. The body section of
each P-Spec should contain a clear description of how each process transforms its
inputs and its outputs.

 If the design is developed using the teamwork/RT tool, this subsection should
contain a brief description of the C-Specs in the design. The C-Specs should
describe how the input and output control flows relate, how processes are turned
on or off, and how changes in the operating mode of a system are triggered.

 If the design is developed using the teamwork/SD tool, this subsection should
contain a brief overview of the M-Specs in the design. This overview should
include information about design modules that may be combined into larger code
modules. The M-Specs should provide a one-to-one mapping to the processes in
the teamwork diagrams. The body of each M-Spec should clearly describe the
function of the module.

c) Scheduling

 This subsection should provide an overview of the scheduling procedures. This
subsection should also describe any use of system support utilities, including
GCS_SIM_RENDEZVOUS. References should be made to the appropriate
portions of the teamwork design.

d) Data Dictionary

 This subsection should contain the data dictionary for the teamwork design. This
data dictionary should include all of the data dictionary entries in the GCS
specification and any additional variables contained in the design that represent
flows between processes. This subsection may also contain all the information
pertaining to resource limitations, such as memory and timing constraints.

B-12

e) Derived Requirements

 This subsection should identify any derived requirements that resulted from the
software design process.

 III. References

References used for the design and anticipated for the construction of the code should be listed
here. This may take the form of a bibliography. The references should include one to the GCS
specification.

With respect to the DO-178B guidelines for the design descriptions, discussions of partitioning
methods, previously developed software components, and deactivated code are not applicable to
the GCS project, and, consequently, are not contained in the design descriptions. Further, since
the project does not have system requirements or a corresponding safety assessment, a discussion
of design decisions that could be traceable to those requirements is not contained in the design
documentation.

B.4 Instructions to Programmers Regarding the Transitional Design
Phase

Subsection 5.2 of DO-178B describes the software design process. Each GCS programmer is
responsible for complying with the guidelines in that section within the scope of the GCS project.
This chapter describes the responsibilities of the programmers during the transitional design
phase of the software development process for the GCS project. Within this transitional phase,
special instructions for modifying the existing design have been included to provide guidance to
the project programmers due to the special circumstances of this period.

During the transitional design phase, the new programmers are responsible for :

1. Modifying the original design of their implementation (developed at RTI) so that the new
detailed design meets the requirements of the most current version of the GCS
specification and the standards set forth in this document in the chapter "Software Design
Standards". As described in the design standards, the CASE tool, teamwork, should be
used to update the design. Only those modifications to the detailed design to correct
functionality or eliminate unnecessary design detail should be made; that is, programmers
should not make changes in the design simply because that is not the design they would
have chosen or because they believe the design is inefficient. There should be a
reasonable justification for each modification. All additional documentation as described
in the section on design documentation also should be generated.

2. Submitting any questions they may have about the specification to the system analyst.
The software package, VAX Notes (ref. B.10), should be used to ask questions about the
specification (so there is a record of the questions and answers). See the section on the
use of VAX Notes in the chapter "Communication Protocol."

3. Submitting the detailed design description for configuration management. When the
design description is complete, each programmer should contact the configuration
manager so that the design description can be placed into the appropriate VAX Code
Management System (CMS) (ref. B.11) library. See the chapter "Instructions for Using
CMS" for a description of some of the basic commands and procedures for using CMS on
this project.

4. Providing a copy of the design description to the project leader after submitting the
design description for configuration management. A copy of the design description

B-13

placed into a binder with sections clearly marked would be helpful. The project leader
will contact the participants in the review to schedule the review sessions.

Each programmer is required to participate in the Design Reviews for his implementation.
The procedures for conducting the design reviews and the description of the role that the
programmer plays during the reviews are described in the Software Verification Plan. The
procedures for the conduct of the Design Reviews will be distributed to all appropriate project
personnel (including the programmers) prior to any reviews. Each programmer must respond to
all Problem Reports issued during the design reviews using the action reporting procedures
described in the chapter "Problem and Change Reporting". Questions about these procedures can
be directed to the SQA representative or project management.

B.5 Software Code Standards

The purpose of the software coding process described in Subsection 5.3 of DO-178B is to
develop source code that is traceable, verifiable, consistent, and that correctly implements the
low-level requirements. As described in Subsection 11.8 of DO-178B, the software code
standards define the programming languages, methods, rules and tools to be used to generate the
GCS source code. The following standards describe the programming language to be used and
constraints on the coding process. For the GCS project, the code standards are primarily focused
on presentation and documentation (comments) requirements.

B.5.1 Programming Language

The GCS specification was written with the assumption that a GCS implementation would be
coded in the FORTRAN language. Although the software could be implemented in a
programming language other than FORTRAN, for this GCS project, the GCS implementations
should be coded in VAX/VMS FORTRAN since the host system for the software is a VAX/VMS
system. VAX FORTRAN (ref. B.12) is an implementation of the full FORTRAN-77 language
that conforms to the American National Standard FORTRAN, ANSI X3.9-1978. All code must
be written in VAX FORTRAN; no assembly language or other language is permitted.
Programmers should use structured programming techniques whenever practical and should not
use unconditional GOTO statements. No further limits have been placed on the use of the
features of the VAX FORTRAN language, including the use of VAX FORTRAN extensions.
The VAX/VMS FORTRAN compiler will be used to generate the object code which will then be
linked into an executable image.

B.5.2 Code Presentation and Documentation

For this GCS project, the programmers are required to follow a few simple guidelines with
respect to the presentation and documentation of the source code. With respect to presentation
standards (line length, indentation, blank lines, etc.), programmers are only required to make the
source code easily readable to aid in verification and future modification. Programmers are
encouraged to make generous use of indentation and blank lines, but no specific constraints are
imposed. With respect to documentation, each programmer should add descriptive comments to
the source code wherever appropriate. The comments should provide sufficient information to
allow changes to be made completely, consistently, and correctly while retaining the structure.
The following items also are required for the documentation of the source code: module header
blocks, a revision history (starting after the first Code Review), and a system for denoting
modifications. Below is a brief description of these items.

B-14

Module Header Block -- Header blocks should be used at the beginning of each module to
provide an overall summary of that module. Figure B.2 shows a general format for the
module header. Each programmer may choose the exact style of the header block; that is,
the style does not have to conform precisely to the style presented in Figure B.2, but all
of the information should be included.

Revision History -- All modifications made to each module should be summarized in a section

called revision history located directly under the header block for that module. Each
modification to a module should be labeled with a version number, v#. For example, the
first modification to a module would be labeled v1 and the second modification would be
v2. The revision history also should contain the Action Report (AR) number associated
with each change made to the module, the date the change is made, the name of the
person implementing the change, and a description of the change.

Notation of Modifications -- Once the source code is submitted for code review, no code that is

to be modified in response to a Problem Report may be deleted. The source code that is
to be modified should be commented out (instead of deleted) and the new code added.
The beginning of all areas of changes should be noted clearly with a comment line, as
shown below, containing the following:

!+

! v# Begin changes for AR#<action report number>. <short description of change>
!-

The end of change areas should be similarly marked by an "End Change'' comment line.

!!!
!!!!!!!!
!
! MODULE NAME:
! PURPOSE:
! ARGUMENTS:
! NOTES:
! AUTHOR:
! IMPLEMENTATION NAME:
! DATE FIRST SUBMITTED FOR CONFIGURATION MANAGEMENT:
!
!!!
!!!!!!!!
!
! REVISION HISTORY
! v# , <date>, <author name>, <description, including AR#>
!
!!!
!!!!!!!!

Figure B.2. Module Header Block and Revision History

B-15

Naming conventions for subprograms, variables, and constants should be understandable (to
aid traceability and verification) and conform to requirements in the GCS specification. The
specification states specific requirements regarding the labeling of global data stores. The
specification also places a constraint on the use of variables in addition to the global data store
variables (see the GCS specification for further information). In addition to these constraints, no
special coding tools should be used to generate the code. Beyond those stated here, no further
constraints have been imposed on the coding process.

B.6 Instructions to Programmers Regarding the Coding Phase

This chapter describes the responsibilities of the programmers during the coding phase of the
software development process. As stated previously, the source code should implement the low-
level requirements and conform to the software architecture as defined in the software design as
stated in Subsection 5.3 of DO-178B. The source code should also comply with the software
code standards and be traceable to the design description.

During the coding process, each programmer should:

1. Generate source code that implements the detailed design description and conforms to the
Software Coding Standards defined above.

2. Document, as described in Subsection 11.11 of DO-178B, the instructions for generating
the object code from the source code and loading any data files that are necessary in
addition to GCS_SIM_RENDEZVOUS. This documentation should also address any
tools to be used to construct or manage the code. A template and specific instructions on
using the VAX Module Management System (ref. B.14) to construct the code will be
provided to the programmers along with specific instructions for generating the object
code. The programmers are not required to provide instructions for linking the code.

3. Submit the source code for configuration management into the CMS library (by
contacting the configuration manager) when development is complete and the code
cleanly compiles. For the GCS project, the programmers are not permitted to link or
execute their code.

4. Contact the project leader when the source code is ready for Code Review. The project
leader will contact the participants in the review to schedule the review sessions.

Each programmer is required to participate in the Code Reviews for his implementation. The

procedures for conducting the code reviews and the description of the role that the programmer
plays during the reviews are described in the Software Verification Plan. The procedures for the
conduct of the Code Reviews will be distributed to all appropriate project personnel (including
the programmers) prior to any reviews. Each programmer must respond to all Problem Reports
issued during the code reviews using the action reporting procedures described in the chapter
"Problem and Change Reporting". Each programmer is also responsible for tracing any problems
found in the code back to the design. The design description should be kept consistent with the
source code.

In addition, it is critical that the programmers adhere to the constraints on communication
among programmers and among programmers and verification analysts. Programmers should not
discuss the GCS specification or their implementations, in general, with the other programmers or
verification analysts. See the chapter concerning communication protocol for further direction.
Questions about these procedures can be directed to the SQA representative or project
management.

B-16

B.7 Instructions to Programmers Regarding the Integration Phase

The software integration process is discussed in Subsection 5.4 of DO-178B. The
programmers do not have a large role to play during this phase of the development process.
During this phase, the programmers should respond to all Problem Reports that are issued to them
as a result of the verification activities that are conducted. The Software Verification Plan
describes in detail the verification activities appropriate for this phase of the development
process. As stated above, each programmer is responsible for tracing any problems found in the
code back to the design, so that the design description is kept consistent with the source code.

B.8 Instructions for Using CMS

This chapter provides some basic information on the use of the VAX DEC/Code Management
System (CMS) as a tool to aid in the configuration management activities for the GCS project.
According to Subsection 7.2 of DO-178B, configuration management should be provided
throughout the software development process for configuration identification, change control,
baseline establishment, and archiving of the software life cycle data. For the GCS project, CMS
will be used for the configuration management of the DO-178B life cycle data shown in Table
B.1. All participants on the GCS project should become familiar with the basic concepts of CMS
since most of the life cycle data will be managed using this tool. Details of the configuration
management process for the GCS project can be found in the Software Configuration
Management Plan.

An important element of configuration management is establishing the configuration
identification for all of the elements that make up the life cycle data. A configuration item is
defined in DO-178B as one or more components that are treated as a unit for configuration
purposes. Paragraph 7.2.1 of DO-178B further states that each configuration item should be
uniquely labeled. For the GCS project, a number of elements of the life cycle data may be
combined into a single configuration item, while other elements of the life cycle data may be
decomposed into separate configuration items. The management of the life cycle data will be
based on the unique labels used for configuration identification. Table B.2 shows the labels for
the configuration items that comprise the DO-178B life cycle data for the GCS project. Since
many of the configuration items are implementation specific, the labels of the individual
configuration items should refer to the specific implementation, as appropriate. For example, the
source code for the Mercury implementation should be referred to as "Source Code for Mercury".
All participants of the project should refer to the project's artifacts by the appropriate label for
each configuration item. The labels given in Table B.2 for the configuration items will be used as
the titles for the project documentation.

B-17

Table B.1. DO-178B Life Cycle Data Required for the GCS Project

Life Cycle Data Subsection
Reference

in DO-178B

Responsibility

Plan for Software Aspects of Certification 11.1 Project Leader
Software Development Plan 11.2 Project Leader
Software Requirements Standards 11.6 Project Leader

Software Design Standards 11.7 Project Leader
Software Code Standards 11.8 Project Leader
Software Accomplishment Summary 11.20 Project Leader

Software Verification Plan 11.3 Verification Analysts
Software Verification Cases and Procedures* 11.13 Verification Analysts
Software Verification Results* 11.14 Verification Analysts

Software Quality Assurance Plan 11.5 SQA Representative
Software Quality Assurance Records* 11.19 SQA Representative
Problem Reports* 11.17 SQA Representative

Software Configuration Management Plan 11.4 Configuration Manager
Software Configuration Management Records* 11.18 Configuration Manager
Software Life Cycle Environment Configuration Index 11.15 Configuration Manager
Software Configuration Index* 11.16 Configuration Manager

Design Description* 11.10 Programmer
Source Code* 11.11 Programmer
Executable Object Code* 11.12 Programmer

Software Requirements Data 11.9 System Analyst

* These life cycle data will be implementation specific.

B.8.1 CMS Description

CMS is an on-line library system that helps track the software development process (ref.
B.11). A CMS library is actually a VMS directory that contains specially formatted files. In
general, CMS works by storing files called elements in a library, tracking changes made to these
files, and monitoring access to the files. A file can contain text, source code, object code, test
cases, etc. Each configuration item shown in Table B.2 will be placed in a unique CMS library.
The configuration manager for the project will establish these libraries and has primary access to
all CMS libraries. Access to the configuration items will be carefully controlled to help preserve
the integrity of the life cycle data. Most project participants, including programmers and
verification analysts, are not allowed direct access to the CMS libraries. The Software
Configuration Management Plan contains more information on the change control procedures for
the GCS project and the baselines for the life cycle data.

B-18

The basic structural unit of the CMS library is called an element. An element consists of a file
and all of the versions of that file. A generation of an element is one specific version of that
element. Elements can be combined into a group, consisting of the selected elements and all of
their generations, that can be manipulated as a single unit. For example, an element can be a
single test case developed to test a functional module and a group could be all of the test cases to
test that module. Specific generations of elements can be clustered into a class and manipulated
as a single unit. For example, the Post-Code Review class could represent the specific
generations of elements that comprise the code resulting after the Code Reviews. The generation
number for all of the elements of a class can be different, indicating that some elements have been
changed more than others. Classes will be used to identify the life cycle data at specific phases in
the development process.

Table B.2. Configuration Identification for the DO-178B Life Cycle Data

Life Cycle Data Labels for the Configuration Items

Plan for Software Aspects of Certification
Software Development Plan Plan for Software Aspects of Certification
Software Requirements Standards Software Development Standards
Software Design Standards
Software Code Standards

Software Accomplishment Summary Software Accomplishment Summary

Software Verification Plan Software Verification Plan
 Software Requirements Traceability Data
Software Verification Cases and Procedures* Software Verification Cases*
 Software Verification Procedures

Software Verification Results* Software Verification Results*

Software Quality Assurance Plan Software Quality Assurance Plan
Software Quality Assurance Records* Software Quality Assurance Records*
Problem Reports* Problem and Action Reports*

Support Documentation Change Forms

Software Configuration Management Plan Software Configuration Management Plan
Software Configuration Management Records* Software Configuration Management

Records*
Software Life Cycle Environment Configuration Index Software Configuration Index *
Software Configuration Index*

Design Description* Design Description*
Source Code* Source Code*
Executable Object Code* Executable Object Code*

Software Requirements Data GCS Specification

* These configuration items will be implementation specific.

B-19

B.8.2 Basic CMS Commands

Once an item has been placed under configuration control, there must be a valid justification
to change it. CMS uses a system of reservations and replacements to manage the elements of a
library. Since the configuration manager has the primary responsibility for the configuration
management activities, the rest of the project participants need to know only a few basic
commands to manage their life cycle data. All project participants should use the labels given in
Table B.2 when referring to specific configuration items. The following are basic CMS
operations that project participants should learn. The Guide to VAX/DEC Code Management
System (ref. B.11) provides more information about the commands available for CMS.

Fetch -- A copy of one or more specified element generations is placed in a directory for use by

the participant. No changes to the file within the CMS library will be made. For
example, a copy of the element generations that comprise the version of code to be
reviewed at the Code Reviews (Pre-Code Review version of an implementation) may be
fetched for all of the participants in the Code Review to examine in preparation for the
Reviews.

Reserve -- A copy of one or more specified element generations is placed in a directory so that it
can be modified by the participant. The element is marked within the CMS library that it
is reserved so that no one else may make changes to it during this time. After the file has
been modified, the file should be returned to the library (using the Replace command)
and the changes will be made to the library copy. As an example of this command, a
programmer should reserve a particular element of source code in order to make a change
to it in response to a Problem Report.

Replace -- An element that has been reserved can be replaced and, in doing so, any changes to
the reserved version (which may be completely different from the replacement file) are
put into the library for later use. A new generation of that element is created. In the
example where the programmer has reserved an element to make a change in response to
a Problem Report, the programmer should replace that element when he has completed
the necessary change.

If an element needs to be changed, it must be reserved, changed, and replaced. Every action
which results in a change to the CMS library (including use of the RESERVE and REPLACE
commands) is recorded in a history file, along with the name of the person requesting the action,
the date, and a comment. The report number for each change should be noted in the comment for
that reservation. The original version, or generation, of the element is generation 1. After an
element is reserved and replaced, it becomes generation 2. All previous generations of any
element are easily retrieved from CMS. A particular class of elements can also be reserved.

B.9 Problem and Change Reporting

According to Paragraph 7.2.3 of DO-178B, there should be a mechanism within the software
development processes for problem reporting, tracking and corrective action in order to:

• record process non-compliance with software plans and standards,
• record deficiencies of the outputs of the life cycle processes,
• record anomalous behavior of the software products, and
• ensure resolutions of these problems.

B-20

An effective problem reporting and tracking system is also extremely important in terms of the
project goals, because one of the major objectives of the GCS project is to collect software error
data which can be used to help assess the reliability of the resultant software and also assess the
effectiveness of different development and verification methods for generating reliable software.
In the context of the GCS project, a problem is a question or issue raised for consideration,
discussion, or solution regarding some artifact of the software development process. In the
software development process, problems can be identified in practically all life cycle data,
including the software requirements, software design and code, and test cases.

The tables in Annex A of DO-178B specify that certain life cycle data are classified under
Control Category 1 (CC1), which means that the project must provide a formal system of
problem reporting, change control, and change review for that data. Other life cycle data are
classified under Control Category 2 (CC2), indicating that formal problem reporting and change
control procedures are not required for certification. For the purposes of developing an efficient
problem and change reporting system, the DO-178B life cycle data has been divided into three
different categories: development products (shown in Table B.3); support documentation (shown
in Table B.4); and records, results, and reports (shown in Table B.5). The life cycle data in the
development products and support documentation categories are all under CC1. A unique
problem and change reporting system has been established for each category under CC1.

B.9.1 Problem Reporting for Development Products

This section addresses the content and identification of problem reports for the development
products, time frame for initiating problem reports, the method of closing problem reports, and
the relationship to the change control activity in compliance with Subsection 11.4 of DO-178B.
Note that the discussion of problem reporting procedures would typically appear in the Software
Configuration Management Plan, according to DO-178B. However, since all project participants
will be participating in the problem reporting, tracking and correction activities, repetition of the
procedures in this document is appropriate.

The GCS Problem Report (PR) and Action Report (AR) forms, shown in Figures 3 and 4,
respectively, will be used to document any problems and subsequent changes to the development
products that arise during the development of the GCS implementations. The PR form is used to
capture data concerning a possible problem that is identified during the software development
process. The Problem Report contains

• information about when (in the development process) the problem was identified,
• the configuration identification of the artifact
• a description of the problem (such as non-compliance with project standards or output

deficiency), and
• a history log for tracking the progress and resolution of the problem.

Table B.3. CC1 Development Products

Design Description
Source Code

Executable Object Code

B-21

Table B.4. CC1 Support Documentation

Plan for Software Aspects of Certification
Software Development Plan

Software Requirements Standards
Software Design Standards
Software Code Standards

Software Accomplishment Summary
Software Verification Plan

Software Verification Cases and Procedures
Software Quality Assurance Plan

Software Configuration Management Plan

Software Life Cycle Environment Configuration Index
Software Configuration Index
Software Requirements Data

Table B.5. CC2 Records, Results, and Reports

Software Verification Results
Software Quality Assurance Records

Problem Reports
Software Configuration Management Records

All problems are investigated to determine if indeed a fault has been detected, in which case

corrective action is taken and properly documented. Each identified fault is traced to determine
the source where the fault was introduced. The AR form is used to capture relevant information
about the action that is taken in response to a Problem Report. The Action Report will contain
the configuration identification of the artifact affected and a description of a change that is made
to an artifact in response to the Problem Report. Change control procedures, as described in the
Software Configuration Management Plan, should be followed when the actual change is made to
a configuration item. In the case that no change is required in response to the PR, the AR form
will contain the justification for not making any changes.

B.9.2 Instructions for Problem and Action Reports

In general, a project participant who identifies, in the course of his prescribed activities,
something in a development product that may be regarded as a problem (such as a violation of a
software requirement or project standard) is responsible for initiating a Problem Report.
However, during those verification activities where a Moderator is present, the Moderator will
have the authority to determine whether issuing a Problem Report is appropriate. Figure B.5
shows the flow of the problem reporting process, starting with the initiation of a PR to the final

B-22

signature from the SQA representative indicating that the problem has been resolved. The
following procedure, as shown in the flow chart, should be followed. During the development
cycle,

1. The initiator of the PR form fills out the form from Section 2 through Section 8. The

Continuation form should be used if additional space is required for further explanation.

2. The PR form is given to the SQA representative who assigns a PR number to it and logs this
PR as an outstanding PR.

3. The SQA representative keeps the original PR form and gives a copy to the most appropriate
member of the development project for examination.

4. The project member receiving a copy of the PR form should examine the appropriate artifact
to determine if a change should be made. The response to the PR is made on an Action
Report. If one or more changes are necessary, the change(s) are made and Action Reports
describing the changes are written. When completing the Action Report, the respondent
should contact the SQA representative to get the appropriate AR number. The respondent
should refer to the AR number when requesting the appropriate configuration item from the
configuration manager. This number should also be placed in the artifact comments when a
change has been made. It is also important to make the change at this time.

5. The project member will return the PR form to the SQA representative with either one or
more Action Reports. The SQA representative checks that the report(s) are properly filled
out and contain an adequate description of the change or an adequate explanation for making
no change. At this time the SQA representative may deem it necessary to give a copy of the
PR form to a different member of the project. This process may repeat itself until the SQA
representative decides no further changes are necessary without further review by the PR
initiator. It is the responsibility of the SQA representative to make sure that each problem is
properly traced back to its origin. The SQA representative notes the sequence of the PR
distribution in the history section of the original PR form.

6. When all parties have responded to the PR, the SQA representative gives the original PR
form and the Action Report(s) to the initiator. If the initiator feels that the problem is
resolved, he signs off on the PR form and gives it to the SQA representative for final
approval. If the initiator does not feel the problem is resolved, the initiator can seek further
changes through the SQA representative. The SQA representative should make note of any
problems in the History Log.

7. The SQA representative then reviews the Problem and Action Reports. If further
modification is deemed necessary, the reports should be distributed for further action. Upon
final approval of the reports, the SQA representative notes the total number of changes and
the total number of no changes on the original PR form and signs and dates it signifying
resolution of the problem. The SQA representative then indicates the resolution of this PR on
the master list of PRs. The Action Report forms should be attached to the original PR form.

8. The SQA representative should notify the configuration manager that the configuration items
that were modified have been approved and should be replaced in the CMS libraries.

B-23

B.9.3 Number System for the Problem and Action Reports

This section discusses the identification system for the Problem and Action Reports. Each
GCS implementation will have its own set of Problem and Action Reports for the development
products. The identification numbers for the Problem and Action Reports are of the form:

a.b where
a is the chronological number of the Problem Report
b is the chronological number of the action made in response to Problem Report
"a"

The Problem Reports will be numbered: 1.0
2.0
3.0
...

The subsequent responses made (via Action Reports) to a Problem Report would be
numbered:

<PR#>.1
<PR#>.2
<PR#>.3
...

For example, consider the third problem found with an implementation and suppose that 2
responses are made to the Problem Report. The Problem Report number would be 3.0 and the
Action Report numbers would be 3.1 and 3.2

B-24

AR#

Reg
res

sio
n

Othe
r

10. Total # of Changes:

13. SQA Signature & Date12. Initiator Signature & Date

8. Test Case Identification:

7. Artifact Identification:
Design Description
Source Code Other

6. Description of Problem:

4. Initiator & Role:
page 1 of ____GCS Problem Report

1. PR #: 2. Planet: 3. Discovery Date:

5. Activity at Discovery:

Rea
din

g
Sp

ec
ifi

ca
tio

n

Rea
din

g C
od

e

Design
Code
Unit Testing

Subframe Testing
Frame Testing

Functional
Structural

Test
 R

ea
din

ess

Rev
iew

Top-Level Simulator
Integration Testing

Development
Phases

Activity

Test
 C

om
ple

tio
n

Rev
iew

Desi
gn

 R
ev

iew
Cod

e R
ev

iew

Test
 C

ase

Crea
tio

n
Test

 C
ase

Exe
cu

tio
n

9. History Log:

Date To Date From Person Comments

11. Total # of No Changes:

Executable Object Code

Support Documentation

Figure B.3. GCS Problem Report Form

B-25

5. Artifact Identification:

6. Description of Action:

4. Respondent & Role:
page 1 of ____GCS Action Report

1. AR #: 2. Planet: 3. Date of Action:

7. Was this action related to another action(s)? Yes AR#(s)

No

I don't know

Support DocumentationDesign Description

Executable Object Code
OtherSource Code

Figure B.4. GCS Action Report Form

B-26

NO

NO

YES

YES

NO

YES

NO YES

1. Initiator starts Problem Report

3. SQA logs PR & gives it to a
 project member for examination

4. Project member examines PR & artifact

Is
change

necessary
?

Project member fills
out Action Report

Project member requests configuration
item from CM, makes change(s)
& completes Action Report(s)

5. Reports given back to SQA

Is
problem
resolved

?

Initiator signs PR

7. PR+AR(s) given to SQA for review

Initiator Reviews Reports

2. Initiator gives PR to SQA

Reports go back
to SQA

6. SQA gives PR+AR(s) to Initiator

SQA gives PR to
other project member

Further
analysis
needed

?

SQA disperses PR
for further examination

Arbitration Committee (project leader,
SQA, system analyst) resolve

problem

8. SQA signs PR indicating approval and contacts
configuration manager to replace configuration item

Need for
others to
see PR

?

NO
Is

problem
resolved

?
YES

Figure B.5. Flow of Problem Reporting Process for the Development Products

B-27

B.9.4 Completing the Problem Report Form

In this section, instructions for completing the fields of the PR form are stated. Specific
instructions or further explanation for each section of the PR form are given below.

page 1 of __: Fill in the total number of pages on each form to help avoid the loss of attached

pages. As many Continuation forms as necessary may be used.

1. PR#: to be assigned by the SQA representative

2. Planet: the name of the planet in whose development process this problem was identified

3. Discovery Date: date when this problem was identified. It is important to issue a PR form at
the time a problem is identified.

4. Initiator & Role: name of the person who has identified the problem and the role
(programmer, verification analyst, SQA representative, or system analyst) that person is
fulfilling at the time of problem identification.

5. Activity at Discovery: The development cycle for each GCS implementation can be
decomposed into 6 distinct phases. In this section, indicate the phase by placing an X in the
appropriate box that corresponds to the development phase in which this problem was
identified and the specific activity that was being performed at that time. If the Other
category is appropriate, please put an explanation in Section b of the Continuation form.

6. Description of Problem: Provide an adequate description of the issue in question.

7. Artifact Identification: Check the box that corresponds to the artifact under consideration
when the problem was identified. The label for the configuration item should be given along
with the information in Table B.6 for each artifact. If a PR is being generated because the
actual results from the execution of a test case did not agree with the expected results, the
initial artifact under consideration would be the executable object code. The test case that
surfaced the anomalous behavior would be identified in Section 8. If more space is needed,
use Section b of the Continuation form.

8. Test Case Identification: If the failure of a test case is the reason for initiating this PR, fill
in the appropriate test case number, including its configuration item label, element name(s),
and generation #; otherwise, indicate Not Applicable (N/A).

9. History Log: to be filled in by the SQA representative. The SQA representative should log
the sequence of dispersals of the PR, logging all ARs related to the PR and noting date of
issuance, date of return, and the person receiving the PR form. The SQA representative
should also note any anomalies in the resolution of the problem, such as disagreements in
resolution between the initiator and the person making the change.

10. Total # of Changes: to be filled in by the SQA representative when all Action Reports are
closed and the problem has been resolved. A total of 0 indicates that no change was made.

B-28

Table B.6. Information for Artifact Identification

Artifact Information
Design Description diagram, P-Spec #, C-Spec #, or M-Spec #
Source Code element name & generation #
Executable Object Code element name & generation #
Support Documentation specific chapter, section, and table or figure reference, as

appropriate
Other be as specific as possible

11. Total # of No Changes: to be filled in by the SQA representative when all Action Reports
are closed and the problem has been resolved.

12. Initiator Signature & Date: The person who initiates the PR should sign and date the
original PR form here when the problem has been resolved.

13. SQA Signature & Date: After checking that the problem is satisfactorily resolved and all
necessary changes have been properly made, the SQA representative should sign and date the
original PR form indicating closure of this PR.

B.9.5 Completing the Action Report Form

In this section, instructions for completing the fields of the AR form are stated. Specific
instructions or further explanation for each section of the AR form are given below.

page 1 of __: Fill in the total number of pages on each form to help avoid the loss of any

attached pages. As many Continuation forms as necessary may be used.

1. AR#: to be assigned by the SQA representative. The respondent should contact the SQA
representative to get the appropriate AR number. When a change is indicated, the AR# can
be incorporated in the comments which describe this change in the code or design.

2. Planet: the name of the planet associated with the person making this action.

3. Date of Action: date when this action was taken. In case of changes, it is important to
complete the AR form at the time a change is being made.

4. Respondent & Role: name of the person who is making the response and his role
(programmer, verification analyst, SQA representative, or system analyst).

5. Artifact Identification: Check the box that corresponds to the artifact in question. The
information in Table B.6 should be specified for each artifact. In case of responses made to
the support documentation, the label for the configuration item should be cited. If more space
is needed, use Section b of the Continuation form.

6. Description of Action: provide a general description of the change that was made or an
explanation of why no change is necessary. In case of responses made to the support
documentation, the appropriate modification number from the Support Documentation Report
Form should be cited.

7. Was this action related to another action(s)?: Check the appropriate box to indicate
whether this action is related to another action. If yes, indicate the relevant AR#(s).

B-29

B.9.6 Problem Reporting for Support Documentation

The problem and change reporting for the support documentation will be conducted through
the use of Support Documentation Change Reports. Although the Support Documentation
Change Report form shown in Figure B.6 does not capture as much detailed information as the
Problem Report, this form does capture the information necessary to comply with Paragraph 7.2.3
of DO-178B. Once a support document enters the configuration management system, all further
changes to that document will be controlled through the Support Documentation Change Reports;
that is, all changes to any support documentation must be accompanied by an approved Support
Documentation Change Report. Each configuration item that is a part of the support
documentation will have its own set of change reports. The SQA representative will keep a log of
all change reports for each configuration item.

The following procedure, as shown in the flow chart in Figure B.7, should be followed for
initiating and completing the Support Documentation Change Report for all support
documentation.

1. The author of the support documentation fills out Sections 1, 2, 4, and 5 of the Support

Documentation Change Report form. The Continuation form should be used if additional
space is required for further explanation.

2. The form is given to the SQA representative who determines if the change request is
reasonable and assigns a modification number to the report if the request is approved.

3. The SQA representative logs this as an outstanding change report for the particular
configuration item and returns the form to the author to implement the change.

4. The author requests to reserve the affected configuration item and must refer to the
modification number when making the request.

5. The author implements the requested change to the configuration item.

6. When the modification is completed, the author completes Section 6 of the form, places the
configuration item in the appropriate place for the configuration manager to retrieve, and
returns the form to the SQA representative for review.

B-30

Support Documentation Change Report page 1 of

1. Configuration Item: 2. Date: 3. Modification #:

4. Part of Configuration Item Affected:

5. Reason for Modification:

6. Modification

7. SQA Signature & Date:

Figure B.6. Support Documentation Change Report Form

7. The SQA then reviews the change for consistency and compliance with project plans and
standards. If the change is not acceptable, the SQA representative can work with the author
to implement the necessary modifications. The project leader will arbitrate if the author and
SQA representative cannot reach consensus.

8. When the change has been completed and approved by the SQA representative, the SQA
representative should notify the configuration manager that the configuration item that was
modified has been approved and should be replaced in the appropriate CMS library.

B-31

B.9.7 Completing the Support Documentation Change Report Form

In this section, instructions for completing the fields of the Support Documentation Change
Report form are stated. Specific instructions or further explanation for each section of the
Support Documentation Change Report form are given below.

page 1 of __: Fill in the total number of pages on each form to help avoid the loss of any

attached pages. As many Continuation forms as necessary may be used.

1. Configuration Item: the label for the configuration item that needs to be changed.

2. Date: date that this change report is being initiated.

3. Modification #: to be provided by the SQA representative. The author should give the form
to the SQA representative to get the number and corresponding authorization to implement
the change.

4. Part of the Configuration Item Affected: describe the location of the proposed change.
Chapter and section references should be included as appropriate.

5. Reason for Modification: explanation detailing why the configuration item should be
changed.

6. Modification: description of the change including the following information as appropriate:
original text (that is to be changed), action (such as deletion, addition, or modification), and
modified text (the correct text to be inserted). If substantial changes are made, the affected
pages should be attached to the form.

7. SQA Signature and Date: After checking that the change is acceptable and has been
properly made, the SQA representative should sign and date the form indicating approval of
this change.

B.9.8 Completing the Continuation Form

The Continuation Form provides extra space in addition to the PR, AR, and Support
Documentation Change Report forms. Figure B.8 shows the Continuation Form. Specific
instructions or further explanation for each section of the Continuation form are provided below.

B-32

______________ Report Continuation: Fill in the blank with the name of the form that is being
continued.

page__ of __: Fill in the page number and total number of pages on each form to help avoid the
loss of any attached pages. As many Continuation forms as necessary may be used.

a. Report #: the number of the report that is being continued

b. Notes/Explanation: This section is to be used to continue comments or descriptions from
any section of a report.

NO

YES

1. Author starts SDCR --
 giving a reason for change

2. Author gives SDCR to SQA
 for approval to make change

3. SQA logs SDCR & gives
it to author to implement change

4. Author requests to reserve specific configuration
 item from CM (giving report #)

6. Author gives SDCR back to
 SQA for review

7. SQA reviews SDCR

8. SQA approves SDCR and contacts
 Configuration Manager to replace
 configuration item

Reports go back to author
for further modification

If approved

5. Author implements change
 and completes SDCR

Is
Change

Acceptable
?

Author makes
appropriate modifications

B-33

Figure B.7. Flow of Change Reporting Process for the Support Documentation

page ___ of ____ ______________ Report Continuation
a. Report #:

b. Notes/Explanation (Please reference appropriate section number)

Figure B.8. Report Continuation Form

B-34

B.10 Collecting Effort Data

The DO-178B guidelines do not address the collection of effort data for a software
development process. However, one of the major objectives of the GCS project is to make
observations on the effectiveness of a development process that complies with the DO-178B
guidelines. Part of the effectiveness assessment includes a report on the effort hours expended to
accomplish various development activities. For the GCS project, effort data will be collected
throughout the DO-178B development process for the GCS implementations from all of the
major project participants (programmers, verification analysts, SQA representative, configuration
manager, and system analyst). There is a unique data collection form specific to each particular
role in the development process, and each participant will be required to record effort on a daily
basis. The list of activities on each form is not an exhaustive list of activities required by the
participants in the project, but instead represents the primary activities where effort data is of
interest. Consequently, the effort hours listed on the effort data forms may not reflect the total
number of hours a participant has worked on the GCS project during the given time period. Each
form will be used to collect information over a period of one week (Sunday through Saturday).
These forms are given in the Section 13. The following are the general procedures for recording
the effort data.

On the form, the participant will fill in his name, the name of the planet to which he is
assigned if applicable, and the dates for the week that the effort is being recorded (for example,
9/20/92-9/26/92 for the week of September 20-26, 1992). Then, for each day of the week, the
participant records the number of hours spent in each of the specified activities. Although the
activities for which the effort is recorded are largely self-explanatory, additional instructions
regarding these activities are given in the Section 13. Time should be recorded to the nearest
tenth of the hour (rounding up) for each activity. For example, if a programmer spends 4 hours
and 21 minutes making changes to his code due to a code review, he would record 4.4 hours in
the appropriate place on the effort data form. There is no need to record a "0" when no effort has
been expended in a particular activity. However, if no effort data has been recorded for any of
the activities during a given week, the effort data form should still be filled out by placing a "0" in
the first entry in the column labeled "Totals" and drawing a straight line through the remainder of
the Totals column. The forms should be submitted to the project leader the following week. Any
questions regarding the effort data should be directed to the project leader.

B.11 Communication Protocol

Because the GCS software development process is part of a larger experiment framework for
studying the characteristics of the software failure process, maintaining a high degree of
independence among the different GCS implementations is important. Hence, the control of
communication among the project participants is very important. A software product called VAX
Notes will be used as the principal means of formal communication among project participants to
help maintain control of the communication among the various project participants and provide
an automated system for recording the exchange of certain information. (See the Software Life
Cycle Environment Configuration Index or further information on VAX Notes.) The
relationships, for communication, among the project participants have been divided into two
classes: primary communication and secondary communication. The following diagram shows
those participants included in the primary communication class.

B-35

Primary Communication Flows
 Programmers <------------> System Analyst
 Programmers <------------> Configuration Manager
 Verification Analysts <------------> Configuration Manager

In the primary communication class, it is important to capture the communication that takes
place between each pairing of participants. All questions about the GCS specification should be
addressed to the system analyst. It is especially important to capture the questions that the
programmers ask the system analyst about the specification and the response from the system
analyst. All questions to the system analyst should be specific to the GCS specification as
opposed to questions about implementation specific issues. Additionally, the programmers and
verification analysts should use VAX Notes when making requests for elements from the
configuration manager, and the configuration manager should respond using VAX Notes.

The relationships in the secondary communication class are shown below.

Secondary Communication Flows

Verification Analysts <------------> System Analyst
Programmers <------------> SQA Representative
Verification Analysts <------------> SQA Representative

In this class, the need to capture all communication between each pairing is not critical.

Verification analysts may use VAX Notes to ask the system analyst specific questions regarding
the GCS specification, but they may not ask implementation specific questions. Questions
regarding project policies, procedures and standards should be addressed to the SQA
representative. VAX Notes may be used here as a convenient medium for communicating and
capturing a record for future reference of that information; but communication using VAX Notes
in these cases is not required.

Along with the VAX Notes conferences established for the communication flows in the
primary and secondary classes, there will be a general Announcements conference available to all
project participants. General information about the project such as schedule changes and meeting
announcements or updates to policies and procedures affecting all project participants may be
posted to this conference.

B.11.1 Conventions for Communication between Programmers and System Analyst

All communication between the system analyst and the programmers should be done using
VAX Notes so that records can be kept of the questions asked about the GCS specification and
the responses made to those questions. This section describes specific conventions that the
programmers should follow when using VAX Notes to communicate with the system analyst
about the specification.

Special VAX Notes conferences and classes have been established to aid communication. The
VAX Notes class which contains the relevant conferences is called GCS. The relevant
conferences in the class GCS are as follows:

Announcements: contains announcements from either the Project Leader or the SQA
representative to all GCS project participants

SA-All-Programmers: contains announcements from the system analyst to all of the
programmers

B-36

SA-Mercury-Programmer: contains all communications between the system analyst and the
Mercury Programmer

SA-Pluto-Programmer: contains all communications between the system analyst and the Pluto
Programmer

Within these conventions regarding communication, the words topic, reply and note will be

used in the strict sense of a VAX Notes topic, reply, or note, respectively. The examples given
here are not meant to be realistic in terms of any specific version of the GCS specification, but are
given merely as examples of notes formatted according to the conventions outlined here.

B.11.2 General Rules Regarding Topics and Replies

If a programmer has a new question to discuss with the system analyst, then the programmer
should send the question to the system analyst by writing a new VAX Notes topic into the
relevant conference. When the system analyst responds to the question for the first time, a VAX
Notes reply to the VAX Notes topic will be sent If the programmer wishes to respond to either
the original topic or the first reply, then that person should send another reply to the same topic,
and the system analyst will do the same. In other words, as long as the conversation is related to
the original topic or any of the replies to that topic, then all communications will be in the form of
sequential replies to that same topic; however once the programmer wishes to ask about or
discuss a new issue, then writing a new VAX Notes topic is appropriate.

Normally, each topic should contain only a single question. A topic may contain more than
one question only in the case where the questions are very closely related to each other. Each
question in a topic should be very specifically stated.

Conventions and Formats for Notes

• Note Title
 Each title may contain up to 63 characters (see page 3-5 of Guide to VAX Notes). The

title should be as informative as possible about the contents of the note because when one
performs a directory of the notes in a conference, the title appears, but the text of the note
does not.

 Topic Title
 The topic title should be written according to a strict format because parts of it will be

used by the system analyst to organize the notes. The topic title should have the
following format, where the "/" is an actual literal that must appear. The item inside
the closed brackets is conditionally required (see below). The format is:

 Topic Title = </Topic Source[/Figure-Table]/Topic Description>

 - Topic Source (required)

 The Topic Source is either the name of the section(s) in the specification or the name
of a modification to the specification, to which the question applies. The specification
section names are predefined and appear in Table B.7 below. The programmer must
use at least the first four characters of the section name if the section name has four or
more characters, but may use more if so desired. If the actual section name has less
than four characters, then the full section name should be used. In those cases where
the first four characters are not unique, substitutions are given in the table below, and
those substitutions must be used instead of the actual section name. In each case, the

B-37

required part of the section name is bolded. If the source of the question is a Support
Documentation Change Report, then the Topic Source should be "Modx.y-z", where
x.y-z is the number of the modification. If, for some reason, none of the predefined
section names nor a modification number is appropriate, then one should use the
substitute name "other" and describe the source in the text part of the topic. In the
case where the question applies to more than one source, list all the applicable sources
separated by commas.

Examples of valid Sources are:
 aecl
 AECLP
 cp
 dad1,dad2,dad3
 intr
 INTRODUCTION
 Terminal Desc
 vehd
 MOD2.2-1
 other

B-38

Table B.7. Specification Section Names

Section Name as it Appears in Table
of Contents

Required Substitutions

arsp
asp
appendix a appa
appendix b appb
appendix c abbc
bibliography
cp
crcp
contents
conventions
data dictionary 1 dad1
data dictionary 2 dad2
data dictionary 3 dad3
definitions
engines
exception handling
foreword
general
gp
gsp
introduction
level 0 spec lev0
level 1 spec lev1
level 2 spec lev2
level 3 spec lev3
list of figures lisf
list of tables list
notation
preface
purpose
reclp
requirements
rotation
tdlrsp
tdsp
terminal descent
title page
tsp
use of tables tabl
vehicle configuration vehc
vehicle dynamics vehd
vehicle guidance vehg
(none) other

B-39

 - Figure-Table (required only if question involves a numbered Figure or Table)

 If the question or issue involves a Figure or Table in the specification, then the
abbreviation "Fig" or "Tab" should appear followed by the actual figure or table
number with no intervening spaces.

Examples of valid Figure-Table are:
 Fig3.1
 figB.1
 Tab5.11
 TABC.1

 - Topic Description (required)

 Topic Description is a description of the question or issue in the topic text. This
description may contain any characters acceptable to VAX Notes. It is suggested that
the description begin with "Q:" for a question, "A:" for an answer or "S:" for a
statement.

 Example of a valid topic description:

 Q: Why is THETA initialized to zero?
Examples of valid Topic titles:

/RECLP/ Q: Why is THETA initialized to zero?
/Aecl/ Q: What does "to the nearest integer" mean?
/TDLRSP/Tab5.11/ Q: What is the meaning of "Σ"?

 Reply Title

 The format of the reply title is as follows:

 Reply Title = <Reply Description>

 The Reply Description is any text which concisely describes the contents of the text of
the note. It does not have to subscribe to any particular format. It may contain any
characters acceptable to VAX Notes.

 Example of valid Reply Title:
 A: Text in spec is incorrect. SA will Issue Formal Mod.

• Note Text

 Each programmer should read Section 3.1.1 of Guide to VAX Notes, "Making Your Notes
More Readable" and should exercise personal judgment in using these suggestions as
guidelines in writing the text part of the note.

 Topic Text

B-40

 The following items may be included in the topic. The bolded items are literals that
should appear in the text. The "Page:" and "Location:" items should appear first and
second, respectively. If the page has a modification, one should include that
information in the page number. The statements and questions may appear in any
order, but each should start on a new line.

PAGE: <the starting page number of the problem or issue> (required)
LOCATION: <description of the starting location> (required)
Q: <the question or problem> (optional)
S: <a statement or comment> (optional)

Example of Topic Text:
Page: 65
Location: Section labeled "DETERMINE PULSE INTENSITY AND

DIRECTION", third sentence from the end of the paragraph.
S: The text states: "The variable THETA will be initialized to the value zero by

INIT_GCS."
Q: Since THETA is the roll angle, it does not seem logical that it would always be

initialized to zero. Is this sentence correct, and if so, why?

Example of Topic Text:
Page: 38 (with Mod 2.2-1)
Location:"DETERMINE ENGINE TEMPERATURE"
Q: Why should the engine temperature be set in AECLP?

 Reply Text

 The following items may be included in the reply text. The bolded items are literals
that should appear in the text. The "RE:" entry should appear first. The statements,
questions, and answers may appear in any order, but each should start a new line.

RE:<Note-range> (required) (Note-range is the range of note(s) to
which this reply is a response. If the note numbers are not contiguous, then list
several ranges separated by commas.)

S: <statement> (optional) (to be used if this part of the text is merely a comment or
statement)

Q: <question> (optional) (to be used if this part of the text is a question)

A: <answer> (optional) (to be used if this part of the text is an answer to a
previous question)

Example of Reply Text:
RE: 12.1
S: The answer in note 12.1 is logical as far as it goes.
Q: It leaves unanswered the following question: Why is temperature calculated

before calculating limiting errors?

B-41

• Keywords

 Topic Keywords

 The keyword will be the literal "v" followed immediately by the specification version
number, which is the actual version number appearing on the title page of the
specification to which this question (or modification) applies.

Examples of valid topic keywords:
v2.2
V2.2

 At the present time, keywords will not be needed on replies.

B.11.3 Optional Notification From Within VAX Notes Using MAIL Utility

It should be noted that VAX Notes does not immediately notify a member of a conference
when a note has been written into the conference. If the programmer wishes the system analyst to
be notified immediately, the "FORWARD" command from within VAX Notes can be used to
send a copy of the new note, with an optional preface, to the system analyst, or alternatively the
"SEND" command from within VAX Notes can be used to send a notification to the system
analyst that a new note has been written to the conference (See Guide to VAX Notes, Sections 3.5
and 3.6)

B.11.4 Using Text Files for Note Creation

There does not appear to be a way to change the text of a note once the note has been entered
into the conference. For that reason, it may be helpful when writing notes to first write the text of
the note into a text file using an editor in order to verify that it is correct. Then from within VAX
Notes, the note can be written into the conference from the text file. For example:

From VMS:
 $edit note.txt (create the text for the note)

Then, from VAX Notes:
 Notes>write note.txt ,or
 Notes>reply note.txt

Figure B.9 shows an example conversation that might take place between a programmer and
the system analyst using VAX Notes. Then, Figure B.10 shows the directory that would result
from the conversation shown in Figure B.9.

B-42

===
Note 1.0 /AECLP/Q: What does "to the nearest integer" mean? 4 replies
AIR19::PG "Programmer" 5 lines 31-DEC-1992 13:02
--

Page: 41

Location: "COMPUTE AXIAL ENGINE VALVE SETTINGS", last sentence.

S: The specification uses the phrase "to the nearest integer".

Q: What exactly is meant by the phrase "to the nearest integer" ?
===
Note 1.1 /AECLP/Q: What does "to the nearest integer" mean? 1 of 4
AIR19::SA "system analyst" 7 lines 31-DEC-1992 15:43
 -< A: Definition of "to the nearest integer" >-
--

RE: 1.0
A: The phrase "to the nearest integer" means the following:
 If the fractional part of the real number is less than .5, then
 set AE_CMD to the closest integer which is less than the real number;
 if the fractional part of the real number is greater than .5, then
 set AE_CMD to the closest integer which is greater than the real number.
===
Note 1.2 /AECLP/Q: What does "to the nearest integer" mean? 2 of 4
AIR19::"PG "Programmer" 4 lines 31-DEC-1992 16:24
 -< Q: What if real number = .5? >-
--

RE: 1.1

Q: What should be done in the case where the fractional part of the real number is exactly equal
to .5?

===
Note 1.3 /AECLP/Q: What does "to the nearest integer" mean? 3 of 4
AIR19::SA "system analyst" 6 lines 31-DEC-1992 16:27
 -< A:Method for treating case where real number = .5 >-
--

RE: 1.2
A: If the fractional part of the real number is exactly equal to .5,
 then treat it as equivalent to the case where the fractional part
 of the real number is greater than .5.
===
Note 1.4 /AECLP/Q: What does "to the nearest integer" mean? 4 of 4
AIR19::SA "system analyst" 4 lines 31-DEC-1992 16:30
 -< S: Support Documentation Change Report will be issued >-
--

RE: 1.0 - 1.3
S: A Support Documentation Change Report for the Specification will be issued to fully resolve
this issue.

Figure B.9. Example of a Conversation Between the Programmer (PG) and System Analyst(SA)

B-43

 conversation-examples
Created: 31-DEC-1992 12:58 1 topic Updated: 31-DEC-1992 16:30

Topic Author Date Reply Title

 AIR19::PG 31-DEC-1992 4 /AECLP/Q: What does "to the nearest integer"
mean?

 AIR19::SA 31-DEC-1992 1.1 A: Definition of "to the nearest integer"
 AIR19::PG 31-DEC-1992 1.2 Q: What if real number = .5?
 AIR19::SA 31-DEC-1992 1.3 A: Method for treating case where real number =

.5
 AIR19::SA 31-DEC-1992 1.4 S: Support Documentation Change Report will be

issued

Figure B.10. Directory of All Notes in the Conversation Example

B.12 Documentation Guidelines

As shown in the list, found in Table B.1, of DO-178B life cycle data that will be produced as
part of this project, each participant in the project is responsible for some portion of the data.
This chapter gives some minimal guidance in the preparation of documentation associated with
the GCS project. Since many of the configuration items that make up the support documentation
will refer to each other and will be in an evolutionary process at the beginning of the project, it is
important to use a common set of labels for all of the configuration items. The appropriate labels
for the configuration items are given in Table B.2. For those items that are implementation
specific, the labels should refer to the appropriate implementation when appropriate. The
configuration item labels given in Table B.2 will serve as the titles for the project documentation.

In general, the contents of all support documentation must follow the descriptions given in
Section 11 of the DO-178B guidelines, where applicable to the GCS project. The support
documents should be formatted in accordance with the standards for NASA technical publications
(ref. B.15). All of the support documentation for this project should also contain the same
preface, as given in the beginning of this document, to provide a common background statement
for the documents. Furthermore, the electronic versions of the project's support documentation
that are stored in the CMS libraries will be produced using Microsoft Word (ref. B.16). See the
Software Life Cycle Environment Configuration Index for more information on the word
processing tools used on the GCS project.

The support documentation and development products will evolve as the project progresses.
As discussed in Subsection 4.2 of DO-178B, all support documentation will be completed prior to
that point in time in the software life cycle necessary to provide timely direction to the personnel
performing the software development and integral processes; e.g. all support materials for
conducting a design review (including the design standards, description of the design review,
review procedures, checklists, traceability matrix, problem and action reporting procedures and
forms, and the configuration management and SQA guidelines) must be in place prior to
conducting a design review. The SQA representative is responsible for assuring that all plans and
necessary materials are developed and reviewed for consistency at the appropriate phases of the

B-44

development process, as per Subsection 8.2 of DO-178B. The project leader must also review
and approve all support documentation.

B.13 Effort Data

The following are the effort data forms and the specific instructions for completing the forms
for each of the significant participation roles in the GCS project. The programmers, verification
analysts, SQA representative, configuration manager, and system analyst are required to record
their effort. The general project policy for collecting effort data is given in the chapter titled
"Collecting Effort Data". Copies of the effort data forms will be given to the project participants
at the start of the project.

B.13.1 Instructions to the Programmers for Recording Effort

This section provides specific instructions to the programmers for recording the amount of
effort exerted for each of the activities listed on the effort data form for the programmers. The
effort data form for the programmers is shown in Figure B.11. The general programmer activities
as listed on the form are given below, followed by a statement that details the specific activities
for which effort should be accounted.

1. Changing Design during Transitional Design Phase: record time spent reading and

understanding version 2.2 of the GCS specification, learning about teamwork, making
modifications to the teamwork design (generated at RTI) to bring it up to version 2.2, and
preparing the design description. This will include most of the time spent on the GCS
project prior to the first Design Review.

2. Developing Source Code: record time spent developing source code to meet the detailed
design description. This will include all time spent generating the source code until the
time of the first Code Review.

3. Participating in Design Reviews and Code Reviews: record all time spent preparing for the
reviews and attending the reviews. Preparation time includes time spent at the Overview
meeting for the Design Review and any time spent inspecting the design or code in
anticipation of a review. If a Design or Code Review is conducted in response to a
modification to the specification, place an * by the hours indicated.

4. Changing Design due to: record time spent making modifications to the detailed design
description in response to a Problem Report issued during one of the particular
development phases listed. Problem Reports for the design will not be issued until the
first Design Review.

5. Changing Code due to: record time spent for making modifications to the software code in
response to a Problem Report issued during one of the particular development phases
listed. Problem Reports for the code will not be issued until the first Code Review.

6. Responding to Modifications to the Requirements: record time spent reading and
understanding the Support Documentation Change Reports for the GCS specification and
making changes to the design or code due to modifications to the GCS specification.
Effort should be recorded in this category only after the first Design Review.

B-45

NAME:____________________ WEEK:___________________

Effort Hours for Programmer Activities
 WEEKDAY

Programmer Activities Su M T W H F Total
1. Changing Design during Transitional Design
Phase

2. Developing Source Code

3. Participating in Design Reviews

 Code Reviews

4. Changing Design due to:
 Design Review

 Code Review

 Unit Test (functional)

 Unit Test (structural)

 Subframe Test

 Frame Test

 Top-Level Simulator Integration
Test

5. Changing Code due to:
 Code Review

 Unit Test (functional)

 Unit Test (structural)

 Subframe Test

 Frame Test

 Top-Level Simulator Integration
Test

6. Responding to Modifications to the
Requirements

 Change to Design

 Change to Code

Figure B.11. Form for Recording Effort Data from Programmers

B-46

B.13.2 Instructions to the Verification Analysts for Recording Effort

This section provides specific instructions to the verification analysts for recording the amount
of effort exerted for each of the verification activities listed on the effort data form. Figure B.12
shows the form that the verification analysts will use to record their effort data. The general
verification activities as listed on the form are given below, followed by a statement that details
the specific activities for which effort should be accounted.

1. Developing Verification Plans, Procedures, and Tools: record time spent developing and

documenting the verification plans and procedures and tools (such as checklists,
traceability data, test cases, test drivers, etc.) during each of the development phases.
Note that effort recorded under the category Transitional Design Phase should include
time spent understanding version 2.2 of the GCS specification, learning about aspects of
software verification, and establishing procedures and tools for the initial verification
activities. In addition, effort in the Transitional Design Phase category will include time
spent establishing and documenting the traceability data and matrix, and the Design
Review procedures and checklists.

2. Participating in Verification Activities: record all time spent doing the verification activities
defined for each of the development phases. This time should include time spent
preparing for the reviews (including attendance to the Overview meeting for the Design
Review and inspecting a design or code in anticipation of a review), attending the
reviews, running test cases, writing Problem Reports when necessary, and re-executing
test cases to determine if a problem is resolved during each of the development phases.

3. Responding to Modifications to the Requirements: record time spent making changes to
any verification plans, procedures or tools, or conducting a verification activity (such as
re-executing test cases or attending a new Design Review) due to Support Documentation
Change Reports for the GCS specification. Effort should be recorded for this activity
only after the first Design Review. Effort should be recorded in the development phase
where the changes are made. For example, if a test case used in the functional part of the
unit testing needs to be changed in response to a modification, the effort hours should be
recorded in the category "Unit Test Phase Functional." If the change relates more to a
general verification procedure or tool (such as the traceability matrix), record the effort
hours in the current development phase.

B-47

NAME:____________________ WEEK:___________________

Effort Hours for Verification Analyst Activities

 WEEKDAY
Verification Analyst Activities Su M T W H F Total

1. Developing Plans, Procedures, and Tools
 Transitional Design Phase

 Coding Phase

 Unit Test Phase: Functional

 Structural

 Subframe Test Phase

 Frame Test Phase

 Top-Level Simulator
Integration Test Phase

2. Configuring Life Cycle Data for:
 Transitional Design Phase

 Coding Phase

 Unit Test Phase: Functional

 Structural

 Subframe Test Phase

 Frame Test Phase

 Top-Level Simulator
Integration Test Phase

3. Responding to Modifications to the
Requirements

 Transitional Design Phase

 Coding Phase

 Unit Test Phase: Functional

 Structural

 Subframe Test Phase

 Frame Test Phase

 Top-Level Simulator
Integration Test Phase

Figure B.12. Form for Recording Effort Data from Verification Analysts

B-48

B.13.3 Instructions to the SQA Representative for Recording Effort

This section provides specific instructions to the SQA representative for recording the amount
of effort exerted for each of the SQA activities listed on the effort data form. The effort form is
shown in Figure B.13. Since there is only one person assigned to provide the SQA services for
the GCS project, the primary SQA activities (conducting reviews and tracking Problem Reports)
are separated on the form for each of the GCS implementations, Mercury and Pluto. Since the
SQA procedures and Support Documentation Change Reports for the GCS specification are
common among the implementations, those categories for recording that effort are not separated
according to implementation. The general SQA activities as listed on the form are given below,
followed by a statement that details the specific activities for which effort should be accounted.

1. Developing Plans, Procedures, and Tools: record time spent developing and documenting
the SQA plans and procedures and tools (such as the master logs for tracking the Problem
Reports) in accordance with the DO-178B guidelines for the GCS project.

2. Participating in Reviews: record time spent preparing for, attending, and generating the SQA
report for reviews conducted in each of the development phases for each of the GCS
implementations. Preparation time includes time spent preparing for and conducting the
Overview meeting for the Design Reviews. If a review is conducted in response to a
Support Documentation Change Reports for the GCS specification, place an * by the
hours indicated.

3. Reviewing Problem Reports: record time spent reviewing, assigning identification numbers
to, distributing and tracking, and logging the Problem Reports during each of the
development phases for each of the GCS implementations. For time spent reviewing
Problem Reports that resulted from Support Documentation Change Reports for the GCS
specification, place an * by the hours.

4. Conducting Audits: record time spent preparing for, conducting, and recording the results of
audits for each of the GCS implementations.

5. Reviewing Modifications to the Requirements: record time spent reviewing Support
Documentation Change Reports for the GCS specification. Effort should be recorded in
this category only after the first Design Review.

B-49

NAME:____________________ WEEK:___________________

Effort Hours for Software Quality Assurance Activities

 WEEKDAY
Software Quality Assurance Activities Su M T W H F Total

1. Developing Plans, Procedures, and Tools
Mercury
 Design: 2. Review
 3. Problem Reports
 Code: 2. Review
 3. Problem Reports
 Unit: 2. Review
 3. Problem Reports
 Subframe: 2. Review
 3. Problem Reports
 Frame: 2. Review
 3. Problem Reports
 Top-Level 2. Review
 Simulator Integration 3. Problem Reports
 4. Audits
Pluto
 Design: 2. Review
 3. Problem Reports
 Code: 2. Review
 3. Problem Reports
 Unit: 2. Review
 3. Problem Reports
 Subframe: 2. Review
 3. Problem Reports
 Frame: 2. Review
 3. Problem Reports
 Top-Level 2. Review
 Simulator Integration 3. Problem Reports
 4. Audits
5. Reviewing Modifications to the
Requirements

Figure B.13. Form for Recording Effort Data from the SQA Representative

B-50

B.13.4 Instructions to the Configuration Manager for Recording Effort

This section provides specific instructions to the configuration manager for recording the
amount of effort exerted for each of the configuration management activities listed on the effort
data form. Figure B.14 shows the effort form for the configuration manager. Since there is only
one person assigned to provide the configuration management services for the GCS project, some
of the configuration management activities have been separated on the form for each of the GCS
implementations, Mercury and Pluto. The general configuration management activities as listed
on the form are given below, followed by a statement that details the specific activities for which
effort should be accounted.

1. Developing Plans, Procedures, and Tools: record time spent developing and documenting
the configuration management plans and procedures and tools (such as creating the CMS
libraries for the project's life cycle data) in accordance with the DO-178B guidelines for
the GCS project. Effort involved in learning about configuration management practices
and CMS should also be included here.

2. Configuring life cycle data for: record time spent performing the configuration management
activities, such as reserving, replacing, and fetching GCS elements or baselining, for each
of the GCS implementations, differentiating between the programmer and verification
analyst for each implementation. Also record time, in the category "General Project", for
time spent providing configuration management for those aspects of the project that are
common to all implementations, including the primary planning documents (Plan for
Software Aspects of Certification, Software Verification Plan, Software Configuration
Management Plan, and Software Quality Assurance Plan).

NAME:____________________ WEEK:___________________

Effort Hours for Configuration Management Activities

 WEEKDAY
Configuration Management Activities Su M T W H F Total

1. Developing Plans, Procedures, and
Tools

2. Configuring Life Cycle Data for:
 Mercury Programmer
 Mercury Verification Analyst
 Pluto Programmer
 Pluto Verification Analyst
 General Project

Figure B.14. Form for Recording Effort Data from the Configuration Manager

B-51

B.13.5 Instructions to the System Analyst for Recording Effort

This section provides specific instructions to the system analyst for recording the amount of
effort exerted for each of the system analyst activities listed on the effort data form. Figure B.15
shows the effort form for the system analyst. In general, the system analyst is responsible for the
definition and maintenance of the software requirements for the project. The activities for the
system analyst as listed on the form are given below, followed by a statement that details the
specific activities for which effort should be accounted.

1. Maintaining the GCS Specification: record time spent reviewing the GCS specification for

correctness and completeness and issuing any Support Documentation Change Reports
that are deemed necessary.

2. Consulting for: record time spent responding to questions about the GCS specification from
the programmers and verification analysts for each of the GCS implementations.

3. Participating in Reviews for: record time spent preparing for and attending the Design and
Code reviews for each of the GCS implementations. Preparation time includes time spent
at the Overview meeting for the Design Review and any time spent inspecting the design
or code in anticipation of a review. If the Design or Code Reviews are held in response
to a Support Documentation Change Report, place an * by the hours indicated.

NAME:____________________ WEEK:___________________

Effort Hours for System Analyst Activities
 WEEKDAY

System Analyst Activities Su M T W H F Total
1. Maintaining the GCS Specification
2. Consulting for:
 Mercury
 Pluto
3. Participating in Reviews for:

 Mercury
 Pluto

Figure B.15. Form for Recording Effort from the System Analyst

B-52

B.14 References

B.1. Finelli, George B.: Results of Software Error-Data Experiments. In AIAA/AHS/ASEE
Aircraft Design, Systems and Operations Conference, Atlanta, GA, September 1988.

B.2. RTCA Special Committee 167. Software Considerations in Airborne Systems and
Equipment Certification. Technical Report RTCA/DO-178B, Requirements and
Technical Concepts for Aviation, Dec. 1992.

B.3. RTCA Special Committee 152. Software Considerations in Airborne Systems and
Equipment Certification. Technical Report RTCA/DO-178A, Radio Technical
Commission for Aeronautics, March 1985.

B.4. Hatley, Derek J.; and Pirbhai, Imtiaz A.: Strategies for Real-Time System Specification.
Dorset House Publishing Company, New York, New York, 1987.

B.5. Shagnea, Anita M.; and Dunham, Janet R.: GCS Development Specification Review
Description. Technical Report, Research Triangle Institute, Research Triangle Park, NC
27709, 1989. Prepared under NASA Contract NAS1-17964; Task Assignment No. 8.

B.6. Teamwork/SA Teamwork/RT User's Guide. Cadre Technologies, Inc., Providence,
Rhode Island, Release 4.0, 1991.

B.7. DeMarco, Tom: Structured Analysis and System Specification. YOURDON Inc., 1133
Avenue of the Americas, New York, NY 10036, 1978.

B.8. Ward, Paul; and Mellor, Steven: Structured Development for Real-Time Systems.
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1985.

B.9. Teamwork/SD User's Guide. Cadre Technologies, Inc., Providence, Rhode Island,
Release 4.0, 1991.

B.10. Guide to VAX Notes. Digital Equipment Corporation, Maynard, Massachusetts, March
1986.

B.11. Guide to VAX DEC/Code Management System. Digital Equipment Corporation,
Maynard, Massachusetts, April 1987.

B.12. Programming in VAX FORTRAN. Digital Equipment Corporation, Maynard,
Massachusetts, September 1984.

B.13. Roberts, Alan; Rich, Don; and Pierce, John: Internal Document : VMS FORTRAN Code
Generation Guidelines. Software R & D Department, Center for Digital Systems
Research, Research Triangle Institute, Research Triangle Park, NC, June 1986.

B.14. Guide to VAX DEC/Module Management System. Digital Equipment Corporation,
Maynard, Massachusetts, April 1987.

B.15. NASA Publications Manual. NASA SP-7013, 1974.

B.16. Microsoft Word User's Guide. Microsoft Corporation. 1991.

C-1

Appendix C: Software Verification Plan for the Guidance and Control
Software Project

Authors: Patrick Quach, Lockheed Martin Engineering and Sciences Corp.
Debbie Taylor, Computer Sciences Corp.

This document was produced as part of Guidance and Control Software (GCS) Project conducted at
NASA Langley Research Center. Although some of the requirements for the Guidance and Control
Software application were derived from the NASA Viking Mission to Mars, this document does not
contain data from an actual NASA mission.

C-2

C. Contents

C.1 INTRODUCTION ...C-3

C.2 OVERVIEW OF VERIFICATION ACTIVITIES..C-3

C.3 VERIFICATION METHODS...C-4

C.4 REVIEW AND ANALYSIS ACTIVITIES ..C-5

C.4.1 DESIGN REVIEW OVERVIEW ..C-6
C.4.2 CODE REVIEW OVERVIEW..C-7

C.5 TESTING ACTIVITIES..C-8

C.5.1 TEST CASE SELECTION AND COVERAGE ..C-9
C.5.1.1 Requirements-Based Test Coverage..C-9

C.5.1.1.1 Equivalence Class Testing ... C-10
C.5.1.1.2 Multiple Iterations of Time-Related Functions.. C-11
C.5.1.1.3 Valid State Transition Testing ... C-11
C.5.1.1.4 Logical Branching Testing .. C-11
C.5.1.1.5 Invalid Equivalence Class Testing... C-11
C.5.1.1.6 Protection Mechanisms for Exceeded Frame Time Testing... C-11
C.5.1.1.7 Invalid State Transition Testing... C-11
C.5.1.1.8 Software Initialization under Abnormal Conditions Testing ... C-12
C.5.1.1.9 Failure Mode of Incoming Data Testing.. C-12
C.5.1.1.10 Out-Of-Range Looping Testing... C-12
C.5.1.1.11 Overflow and Underflow Testing .. C-12
C.5.1.1.12 Summary ... C-12

C.5.1.2 Structure-Based Testing ..C-13
C.5.1.2.1 Modified Condition/Decision Coverage .. C-13
C.5.1.2.2 Decision Coverage... C-14
C.5.1.2.3 Statement Coverage... C-14
C.5.1.2.4 Data and control coupling coverage .. C-14
C.5.1.2.5 Summary ... C-15

C.5.2 TEST CASE EXECUTION STRATEGY..C-15
C.5.2.1 Low-Level Testing ..C-15
C.5.2.2 Software Integration Testing..C-16

C.5.3 TEST OUTPUT REVIEW ...C-16
C.6 VERIFICATION ENVIRONMENT AND TOOLS ..C-17

C.7 TRANSITION CRITERIA..C-17

C.8 REVERIFICATION ACTIVITIES ..C-18

C.9 REQUIREMENTS TRACEABILITY MATRIX ...C-19

C.10 STRUCTURE-BASED TEST TYPE MATRIX..C-22

C.11 REFERENCES ..C-23

C-3

C.1 Introduction

This document is the Software Verification Plan for the Guidance and Control Software (GCS)
project. The plan details verification activities to be conducted to satisfy DO-178B criteria for
software verification and discusses issues important to the verification process. The procedures
and processes will be applied to all implementations of GCS.

Software verification activities serve as "filters" for the development process. These activities
are independent from the development process, but effect the development process because each
step of the development processes that produces an artifact will initiate a verification activity. As
defined in Paragraph 6 of DO-178B (ref. C.2), software verification is a technical assessment of
the results of the software development process as well as an assessment of the verification
process. Two methods for verification addressed in this document are reviews/analysis, and
testing. Other activities that support these methods will also be addressed as well as issues and
considerations involved.

The following is a brief description of topics covered in this document. The Overview of
Verification Activities section describes the composition and organization of each
implementation team as well as the independence established for verification purposes. This is
followed by the Verification Methods section which outlines the review procedures for the design
and code artifacts. The following section describes the test coverage and testing strategy required
by DO-178B and to be used to verify executables against the GCS Specification. The GCS
Specification will serve as the Software Requirements Data for this project. The Verification
Environment section briefly describes the tools to be used during the verification process and the
programs developed to support verification activities. The hardware platform on which those
activities will be carried out will also be described. The Transition Criteria section gives
objectives to be met for each step in the verification process before proceeding to the next step.
Lastly, the Reverification Guidelines describe procedures to be followed to verify an artifact
after a correction has been made to the artifact.

C.2 Overview of Verification Activities

As part of the GCS project, there are two teams working independently on two
implementations of the GCS. Each team consists of a Programmer/Designer and a Verification
Analyst. Each Programmer/Designer has the duty of deriving a design from the GCS
Specification and translating the design into source code. Each Verification Analyst will check
both the design and the source code to ensure that both meet all the requirements in the GCS
Specification as well as all the requirements for verifiability set out by DO-178B. As illustrated
in Figure C.1, the Programmer/Designer is charged with producing the artifacts (with the
exception of the GCS specification) that initiates the verification activities; while the Verification
Analyst is charged with applying the verification activity to those artifacts until the transition
criteria has been meet.

C-4

Development Process Verification Activity Transition Criteria

Requirements

Design

Code

Integration

Beyond scope of GCS project�
No system requirements available.

Design Review

Code Review

Structural-based Tests

SW Requirements approved
by project management

Design Description reviewed and
approved by all inspectors

Meet 100% requirements coverage�
(Passed all requirements based test
cases.)

Source Code reviewed and
approved by all inspectors.

Meet 100% Multiple Condition /
Decision Coverage.�
(Which also meets:�
 100% Decision Coverage�
 100% Statement Coverage)

GCS Specification
SW Requirements Data

Design Description

Source Code

Source Code/Executable Code
Requirements-Based Testing

Low-level Tests�
(functional unit)

SW Integration Tests�
(subframe, frame, trajectory)

No HW/SW integration Tests

Figure C.1: Overview of verification activities.

For each implementation in the GCS project, verification activities begin after the initial
design is completed as indicated in Figure C.1. When a design is completed initially, a review
will be held to verify that it satisfies the requirements. Source code will only be written after
completion of the design review. Note that the process of generating the source code is part of
the software development processes and not part of the verification process. Once the source
code is completed it is reviewed for consistency with the design and the GCS Specification.
When this is complete, testing can begin on the executables generated by the source code.
Testing is deemed complete when the test completion criteria, as described below, are met.

As described above, the verification activities will be coordinated with the software
development processes. For each GCS implementation, however, verification activities are
performed by a verification analyst not involved with the software development processes. This
establishes independence between the software development and verification activities, which
according to Myers (ref. C.3) are activities with conflicting objectives.

C.3 Verification Methods

This section describes the verification activities to be conducted during each phase of the
development life cycle as well as the compliance documents produced from those activities.
Some documents will be used, as specified in the DO-178B, to establish the traceability of
requirements from the design process to actual test output. Verification activities for the GCS
project include:

C-5

• Review and analysis of artifacts from the Design and Code processes
• Test case development and execution

The ultimate purpose of the software verification process is to detect and report errors that

may have been introduced in the development processes. Although the removal of these errors is
an activity of the software development processes, it is within the scope of the verification
process to ensure that corrections are made and that no additional errors are introduced during the
correction process. Software verification has several general objectives. These are:

• To ensure that the high-level requirements, hereafter referred to as the GCS Specification
(ref. C.2), have been correctly developed into software architecture and low-level
requirements.

• To ensure that the software architecture and low-level requirements have been correctly
developed into Source Code that satisfies the low-level requirements and software
architecture.

• To ensure that the Executable Object Code satisfies the software requirements.
• To ensure that the methods and approaches used to satisfy these objectives are technically

correct and complete.

The review and analysis and testing activities will be carried out to satisfy the four verification
goals. First, formal reviews will be conducted on the artifacts of the design and coding processes
to ensure that they reflect the requirements of the respective development processes. The review
procedure for the GCS project is described in the Verification Cases and Procedures document
and is developed based on guidelines in DO-178B. Both the Design and Code will undergo this
review procedure. The emphasis of each review will be discussed in the Review and Analysis
Activities section.

The second major activity of verification process is test case development and execution.
Testing according to DO-178B Paragraph 6.4 should demonstrate that the software satisfies its
requirements and that all errors which could lead to unacceptable failure conditions have been
removed. Additionally, enough test cases must be created so that the coverage criteria given in
DO-178B is satisfied. A test strategy for GCS must accommodate low-level tests which verify
that code segments are correctly implemented and high-level tests which verify that major
functions of the requirements are met. The software for each GCS implementation will undergo
testing to satisfy the criteria outlined in the Testing Activity section. This ensures that the
executable modules satisfy the GCS Specification for functionality. Test case development and
test execution strategy will be described in the Test Activities section in this document. The
procedures for test case execution are in Software Verification Cases and Procedures .

C.4 Review and Analysis Activities

Because the GCS Specification is the highest level of system specification available and, for
project purposes, assumed to be correct, the verification process will begin with verification of
the design. This section gives an overview of the review and analysis to be conducted for each
implementation. The same procedures will be used for the review and analysis of both the
Design and Code, the difference being the artifact of the review. The actual procedures and
responsibilities of participants are given in the Review Procedure in Software Verification Cases
and Procedures .

C-6

C.4.1 Design Review Overview

According to Paragraph 5.2 of DO-178B, the purpose of the software design process is to
refine the software high-level requirements into a software architecture and the low-level
requirements that can be used to implement the source code. The software verification process
demands that the artifact produced by the software design process, the detailed design, be
reviewed to confirm that it fulfills the purpose stated above. The GCS Specification embodies
the software high-level requirements as well as some level of software design. Thus, some of the
necessary refinements of the software requirements have already been accomplished in the GCS
Specification.

Paragraph 6.3.2 of DO-178B specifically states that the detailed software design should be
reviewed and analyzed to identify and report errors that may be introduced during the software
design process. The detailed design for each implementation will be subjected to an independent
Design Review. In each case, the review will be conducted to satisfy the review and analysis
objectives in DO-178B Paragraph 6.3. These objectives are further delineated below.

The first objective is to ensure that the software low-level requirements satisfy the high-level
requirements and any derived requirements are correctly defined. The reviewers should ensure
that the detailed design conforms to the requirements in the GCS Specification. That is, the
detailed design should complete the design that has been expressed in the GCS Specification and
reflect all of the high-level requirements and derived requirements. The design should address
exactly what needs to be accomplished in order to fulfill the requirements stated in the GCS
Specification. If each of the high- level requirements has been decomposed into its respective
low-level requirements, then the low-level requirements should be directly translatable into
source code.

Another objective expressed in DO-178B is that the low-level requirements and the design be
accurate, unambiguous and non-conflicting. To satisfy this goal, reviewers should ensure that all
annotations used in the design are clearly explained, the explanation of algorithms are concise,
and all processing steps are listed in the order that they should occur.

In addition, reviewers should be alert for features of the design that presuppose hardware
functionality that is actually not present in the target hardware. This should not be a major
concern for the GCS project because the GCS software is targeted to run in coordination with a
simulator that runs on the same computer as the implementation. Reviewers do, however, have to
lookout for design features that cannot be implemented on the target computer or features that the
compiler lacks.

The Design Review should also verify that the detailed design for each implementation
complies with the Design Standards. The Design Standards require that the structured analysis
and design methods described by Hatley and Pirbhai (ref. C.4), DeMarco (ref. C.5), or Ward and
Mellor (ref. C.6) be used, and that the Computer Aided Software Engineering (CASE) tool,
teamwork (ref. C.7), be used to develop the detailed design. See the Software Development
Standards for more information on the Design Standards.

The Design Review should ensure that features in the design can be verified and that they are
traceable back to the requirements document. This objective can be satisfied by ensuring that all
features in the design are testable. Traceability of the required features from the GCS
Specification to each GCS design can be established by using a Traceability Matrix for each
implementation. The matrix will map each requirement in the specification to the corresponding
features in the design.

C-7

Lastly, according to DO-178B, the reviewers must ensure that the algorithms described in the
design perform what is required in the specification. Details about numerical accuracy in the
design should be verified against those in the GCS Specification.

C.4.2 Code Review Overview

According to DO-178B, the purpose of the software code process is to produce source code
that is traceable, verifiable and consistent. The source code generated during this process should
comply with the Software Code Standards, generate an error free compilation and be traceable to
the Design. The software verification process demands that the artifact produced by the software
code process, the source code, be reviewed to confirm that it fulfills its purpose.

Paragraph 6.3.4 of DO-178B specifically states that the source code should be reviewed and
analyzed to identify and report errors that may be introduced during the software coding process.
For each implementation, there will be a formal Code Review to ensure that the objectives set
forth in DO-178B are met by the source code.

One of the primary objectives of each GCS Software Code Review is to ensure that the source
code is accurate and complete with respect to the low-level requirements identified in the
Detailed Design. Reviewers should ensure that all required features in the design are
implemented. This includes all of the original requirements as well as all of the derived
requirements identified in the design review. Care must be taken to ensure that the source code
contains no extraneous functions that are undocumented in the GCS Specification or the specific
design.

The second objective for code reviewers, according to DO-178B, is to ensure that all the code
matches the data and control flow defined by the software design. This includes extra or missing
flows into functional units. The reviewers should also verify the execution sequence of all the
modules to see if the control flow specified in the design is adhered to.

DO-178B also calls for verification of testability of source code. Reviewers should ensure that
all of the source code in each implementation is testable without modification. For GCS
implementations, this can be satisfied by verifying that modules can be tested individually or
collectively. There should also be no statements that need to be altered in order to test the code.

The Code Review should also verify that the source code complies with the Software Code
Standards. The Software Code Standards state that the source code should be written in
VAX/VMS FORTRAN, using structured programming techniques. A formal header system to
document changes is also required. See the Software Development Standards for more
information on the Code Standards.

The Code Review will ensure that the software architecture and low-level requirements
defined by the detailed design and the GCS Specification are traceable to the source code. This
will be done by completing the Traceability Matrix for the source code. The Traceability Matrix
should identify the part of the code that implements each requirement. Completing the
Traceability Matrix also establishes that all requirements have been implemented.

The correctness and consistency of the source code will also be verified during the Code
Review. This includes such things as proper handling of exceptions, identification of unused, un-
initialized or undefined variables or constants, and other potential problems.

C-8

C.5 Testing Activities

This section will give a brief overview of the GCS testing activities. Specific test cases and
procedures will be detailed in Software Verification Cases and Procedures. Testing activities
will be modeled similar to Figure 6.1 of DO-178B -- with some project specific adjustments.
DO-178B recommends that a multi-level testing plan be implemented to achieve complete
requirement and structural coverage objectives. For this reason, GCS test cases are developed to
cover the GCS Specification and the implementation code. Both test case development and
execution strategy will be summarized here with detailed application discussion in their
respective sections.

Before actual testing can commence, test cases must first be created. DO-178B stresses that
test cases should be requirements-based because such test cases are the most effective for error
detection. Additionally, DO-178B stresses in Paragraph 6.4.2 that the requirements-based test
cases should have two categories; namely, normal range and robustness cases. Hence,
requirements-based test cases will ensure that all requirements in the GCS Specification will be
tested. For completeness, DO-178B also stresses the need for test cases based on structural
coverage. These cases are derived from a specific code structure and test parts of the code flow
that are not exercised by the requirements-based test cases.

When a GCS implementation is ready for testing, the Verification Analyst will test it at two
levels deviating from the three levels recommended by DO-178B. The two levels, at which GCS
implementations will be tested are

• Low-level Testing
• Integration Testing

Low-level testing entails execution of test cases derived from the software low-level
requirements and structural coverage. Testing at this level will focus on executing the source
code corresponding to the eleven functional units in the GCS Specification:

Axial Engine Control Law Processing AECLP
Altimeter Radar Sensor Processing ARSP
Accelerometer Sensor Processing ASP
Communications Processing CP
Chute Release Control Processing CRCP
Guidance Processing GP
Gyroscope Sensor Processing GSP
Roll Engine Control Law Processing RECLP
Touch Down Landing Radar Sensor
Processing

TDLRSP

Touch Down Sensor Processing TDSP
Temperature Sensor Processing TSP

There will be a unique set of requirements-based test cases for each functional unit.

Equivalence class partitioning and boundary value analysis will be used to determine the test
cases. These cases test the valid and invalid equivalence classes as described below. These tests
verify that the low-level requirements have been correctly implemented in the code.

C-9

Integration testing for the GCS implementations will be carried out in several phases. The
first integration phase will occur at the subframe level. At this phase, test cases will treat each of
the three subframes defined in the GCS Specification (Sensor Processing, Guidance Processing,
and Control Law Processing) as aggregate units. The next phase of integration testing combines
the subframes as an integral frame and tests only flows in and out of the frame. The final phase
of integration testing involves integrating an implementation with the GCS Simulator. For this
phase, test cases will exercise the implementation through complete trajectories. More details
will be provided in the respective sections.

DO-178B additionally calls for testing at the hardware/software integration level. Because no
hardware is involved in the GCS project except for the computer that will host the GCS Simulator
and the GCS implementations, this type of integration testing will not be conducted. The GCS
Specification only requires each implementation to be compatible with the GCS Simulator. The
final phase of testing will satisfy this requirements by executing each implementation with the
simulator.

Once the integration testing is completed, each implementation will be analyzed for structural
coverage. During the analysis, a graph of the structure of each source code module will be
generated. Then the paths covered by the requirements-based test cases will be compared to the
graphs to identify any remaining structure that needs to be exercised to meet the structural
coverage requirement. Test cases can then be created for those paths not yet exercised by the
requirements-based test cases.

C.5.1 Test Case Selection and Coverage

As previously stated, test cases will be created based on software requirements and software
structure. This section describes how the requirements and structural coverage criteria for test
case development will be achieved.

C.5.1.1 Requirements-Based Test Coverage

The overall objective of requirements-based testing is to show that the software will perform
the specified requirements. It should be noted that since all GCS implementations are developed
using the same requirements specification, there will only be one set of requirements-based test
cases. That is, the efforts of the two Verification Analysts working on the GCS project will be
pooled to develop a single suite of requirements-based test cases.

Paragraph 6.4.2 of DO-178B gives guidelines for accomplishing this test coverage by dividing
the test suite into two groups - normal range and robustness test cases. Normal range test cases
are used to demonstrate that the software responds correctly to normal input conditions.
Robustness test cases are used to demonstrate that the software responds gracefully to abnormal
or unspecified input conditions, where gracefully here is taken to mean that the software does not
respond in a way that is detrimental to the survival of the spacecraft. The GCS Specification only
requires the developers to flag these conditions and continue. Paragraph 6.4.2.1 of DO-178B
gives 4 criteria for selecting normal range test cases. These include:

• cases exercising valid equivalence class and boundary values for real and integer variables
• cases that exercise multiple iterations of time-related functions
• cases that exercise valid state transitions
• cases that test logical branching

C-10

Paragraph 6.4.2.2 of DO-178B gives 7 criteria for selecting robustness test cases. These
include:

• cases exercising invalid equivalence classes for real and integer variables
• cases that test protection mechanisms for exceeded frame times
• cases that invoke invalid state transitions
• cases which initialize the software under abnormal circumstances
• failure modes of incoming data
• cases which test out-of-range loop counters for loops with calculated loop counters
• cases that test overflow or underflow conditions in calculations

C.5.1.1.1 Equivalence Class Testing

The first criteria mentioned for selecting both normal range and robustness test cases is based
on Myer's technique of Equivalence Class Partitioning (ref. C.3). Equivalence class partitioning
is based on dividing the input domain of a programming unit into equivalent groups (or classes)
so that the results from testing one value from a class will be representative of other values in that
equivalence class. Myers asserts that any error revealed by one input value in the group will also
be repeated for other members of the equivalent input class. Hence testing one value in the
equivalent group will reveal all the errors for that group. This reduces the number of test cases
necessary to test the entire input domain.

Equivalence partitioning is applied to variables in the GCS Specification that are used in a
non-discrete fashion. These are variables for which the RANGE field in the data dictionary of the
GCS Specification is given by a continuous range of values instead of single-point values. Note
that for each data element in the data dictionary a RANGE is given as well as a DATA TYPE.
The DATA TYPE defines all possible values that can be stored by the data element while the
RANGE identifies the a subset of allowable values for the GCS implementations.

For each variable to be tested, all possible values of that variable are divided into logical
ranges depending on the usage and allowable range of the variable as defined in the GCS
Specification. The ranges contained in the allowable values as given in the data dictionary are
considered to be the "valid" equivalence class. The remaining ranges make up the "invalid"
equivalence for that variable. The equivalence classes identified for testing are listed in an
equivalence class table in Software Verification Cases and Procedures. Note that the list does
not include all variables in the four data stores defined in the GCS Specification. This is because
not all data elements defined in the GCS Specification are used as non-discrete enumeration.

For example, the variable ATMOSPHERIC_TEMP is an input to the functional units ASP and
GSP. It is listed in the data dictionary in the GCS Specification as an 8-byte real variable with
valid (or useful) values ranging from -200.0 to 25.0. This range of useful values gives rise to
three equivalence classes since the full range of any 8-byte real variable on the platform the code
is to run on is from -1.7 x 1038 to 1.7 x 1038. Namely, the equivalence classes for
ATMOSPHERIC_TEMP are:

1) -1.7 x 1038 to -200.0
2) -200.0 to 25.0
3) 25.0 to 1.7 x 1038

The second range of numbers is a class because any value between (-200, 25) for

ATMOSPHERIC_TEMP are "treated" the same in both functional units. Further, it is the only
"Valid" equivalence class because the behavior of the functional unit has been defined for

C-11

ATMOSPHERIC_TEMP values in that range. The other two ranges are considered "Invalid"
equivalence classes because the behavior of the functional units for values in those ranges are not
defined for this variable in the GCS software.

As categorized in Paragraph 6.4.2 of DO-178B, test cases using the valid equivalence classes
correspond to the normal range test cases while the test cases using the invalid equivalence
classes are the robustness test cases. For each functional unit, the equivalence classes of all
variables in the input space are identified. Then enough test cases are needed to test all the
equivalence classes in order to satisfy this test coverage. Myers suggests that only one invalid
equivalence class should be tested per test case. However, valid equivalence classes of several
variables can be combined in a single test case to expedite testing. Hence, in the previous
example, a minimum of three test cases would be necessary to adequately test
ATMOSPHERIC_TEMP in each functional unit (ASP and GSP), one for each invalid
equivalence class (1 & 3) and one for the valid equivalence class (2). Of course, the latter one
can be combined with the valid equivalence classes of several other variables in the same
functional unit to expedite testing. To help account for all the equivalence classes tests, a table is
created to match the equivalence class with all the test cases that test that equivalence class. The
equivalence class table is given in Software Verification Cases and Procedures.

C.5.1.1.2 Multiple Iterations of Time-Related Functions

Normal range test cases that exercise multiple iterations of time-related functions will be
tested in integration testing. These cases will exercise the GCS implementation through frames
where critical events take place to see if the software responds properly. These cases are
documented in the requirements Traceability Matrix.

C.5.1.1.3 Valid State Transition Testing

The Traceability Matrix (Section 9) documents the high- and low-level requirements. The
valid state transitions are included as part of the low-level requirements and are given under the
respective functional units in which the state transitions take place. Hence test cases that test
valid state transitions are identified in the Traceability Matrix.

C.5.1.1.4 Logical Branching Testing

Paragraph 6.4.2.1 of DO-178B also specifies that normal range test cases should verify the
variable usage and the Boolean operators used in logic equations. This coverage criteria is
essentially the same as the Multiple Decision/Condition Coverage; and is discussed below as part
of the structure-based testing. These test cases will be documented as part of the structure
analysis of each implementation.

C.5.1.1.5 Invalid Equivalence Class Testing

Invalid Equivalence testing was discussed earlier in the section with Valid Equivalence
Testing. Test cases will be generated to cover all invalid equivalence classes.

C.5.1.1.6 Protection Mechanisms for Exceeded Frame Time Testing

Cases which test protection mechanisms for exceeding frame times are not necessary for GCS,
because there are no processing time requirements stipulated in the GCS Specification. Hence
there are no time limits to test.

C.5.1.1.7 Invalid State Transition Testing

Invalid state transitions are not part of the traceability matrix because it only lists what the
software is required to do and not what the software is NOT suppose to do. Invalid state

C-12

transition tests also differ from invalid equivalence class tests in that invalid equivalence cases
examine the response of a functional unit when given a variable with an out-of-range value. In
contrast, invalid state transition cases test possible permutations of state variables that are not
specifically addressed in the GCS Specification or provoke transition to an invalid state. The
state transition tables in the GCS Specification give information about valid state transitions that
the software is suppose to make. These tables do not provide a complete listing of possible input
combinations. For completeness, test case listings given in Software Verification Cases and
Procedures will include separate tables where applicable to test invalid state transitions.

C.5.1.1.8 Software Initialization under Abnormal Conditions Testing

DO-178B also calls for testing software initialization under abnormal conditions. This will
not be done because the GCS Specification does not require software initialization to be
performed in each implementation.

C.5.1.1.9 Failure Mode of Incoming Data Testing

Paragraph 6.4.2.2 of DO-178B also indicates a need to test the failure mode of incoming data.
For GCS implementations, there are two possible interpretations of data failure mode. One
interpretation is that data external to a GCS implementation, such as a sensor reading, is corrupt.
The second is that data that is computed and passed between functional units is corrupt (e.g., zero
or negative values to be divided or square-rooted). In the first case, the GCS Specification
stipulates behavior for data failure modes by including various status variables and incorporating
the status values in determining the behavior of the software. In this case, testing the failure
mode of the incoming data becomes testing the valid and invalid equivalence classes of the status
variables. In the second case where data is corrupted during computation, there are also
provisions to print warning messages when conditions such as division-by-zero, and negative-
square-roots occur. Additionally, the input space of each functional unit is tested by valid and
invalid equivalence class tests. Hence, invalid equivalence class test cases also satisfy this
coverage criteria.

C.5.1.1.10 Out-Of-Range Looping Testing

DO-178B Paragraph 6.4.2.2 indicates a need to test loops where the loop count is a computed
value. If a given implementation has computed loop counters, test cases are generated and
documented as robustness test cases in the test case listing of Software Verification Cases and
Procedures . For loops that do not use calculated loop counters, testing one iteration through the
loop will be sufficient since the loop counter is not manipulated to cause out of range conditions.
During structural analysis of each implementation, looping decisions that do not involve
calculated counters will not be tested.

C.5.1.1.11 Overflow and Underflow Testing

Finally, overflow and under flow conditions must also to be tested, according to DO-178B.
For GCS, this involves testing the input space of each functional units with values for variables
that are outside the range defined for the variables. These ranges are previously identified as
"invalid" equivalence classes. Consequently, testing the invalid equivalence classes for each
functional unit also constitutes testing the overflow and underflow conditions.

C.5.1.1.12 Summary

DO-178B specifies that requirements-based test cases are to be divided into two groups. The
normal range tests must meet the criteria given in Paragraph 6.4.2.1 of DO-178B and verify that
the software is delivering what is required in the GCS Specification. The robustness tests must
meet the criteria given in Paragraph 6.4.2.2 of DO-178B and verify that the software does not

C-13

cause catastrophic failure when encountering abnormal input conditions. For the GCS project,
abnormal inputs will be tested to the point as required by the GCS Specification; that is, the GCS
Specification dictates how certain exceptions are to be handled. Robustness testing will verify
that those mechanisms operate correctly.

To ensure adequate requirements coverage, the verification analyst will review the
Traceability Matrix to ensure that there are test cases identified with each requirement in the
matrix. If test cases have not been identified for a requirement, then test case(s) must be devised
to verify that the software meets that requirement. This step is considered complete when there
are test cases associated with every requirement in the Traceability Matrix.

C.5.1.2 Structure-Based Testing

DO-178B also emphasizes structural testing. A set of coverage guidelines is given in DO-
178B Table A-7 and deals mainly with structural testing criteria with considerations for the
criticality of the software to the mission. The table also specifies whether the test coverage
criteria should be satisfied with independence. That is, those individuals who verify the software
must be independent from the developers. As stated in other GCS documents, each GCS
implementation is considered to be Level A software because it is critical to the successful
landing of the spacecraft. For Level A software, Table A-7 specifies that all coverage criteria be
satisfied with independence. This has been achieved for each implementation because each
implementation team has separate developers and verifiers. Table A-7 specifies that the
following structural coverage requirements be achieved for each GCS implementation:

• modified condition/decision coverage

• decision coverage

• statement coverage

• data and control coupling coverage

The sections below will describe the test cases developed based on guidelines given in
Paragraph 6.4.2 and Table A-7 of DO-178B. The discussions will focus on how each coverage
category is satisfied and the procedure for documenting those test cases.

C.5.1.2.1 Modified Condition/Decision Coverage

The Modified Condition/Decision Coverage (MC/DC) requirement specifies that test cases
satisfy four criteria. A test case must be derived to test each decision at every possible outcome.
For those decisions with multiple conditions, test cases must cover all possible outcomes of each
condition in the decision. Each condition must be shown to independently affect the decision
outcome. Finally, test cases must invoke each entry and exit point in the software.

This coverage condition will be achieved in several steps for each functional unit in the GCS
implementations with the aid of the Analysis of Complexity Tool (ACT). The ACT software (ref.
C.8) is a tool developed by McCabe & Associates Inc. to perform complexity analysis on
software. The tool can determine the cyclomatic complexity of a software product and provide a
basis set of paths that reveal the flow of data and logic in the software. The ACT Software will
be used to parse the GCS FORTRAN source code for each functional unit, to identify all the
decisions made in the source code for the functional unit, and to graph the decision tree for the
source code. For each functional unit, the verification analyst will create a decision table and
identify a test case for all possible outcomes of each decision.

For each decision that has multiple conditions, a separate Pairs Table will be created. To
clarify, a decision is generally thought of as a complete statement while the conditions are the

C-14

subparts of the statement that are combined by logical operators such as AND, OR, etc. The Pairs
Tables as described in (ref. C.9) list the conditions in the decision and give a test case for all
possible outcomes of each condition. Note that this does not imply all possible permutations of
the conditions in the decision. The Pairs Tables are also used to indicate the test cases that
demonstrate the independent effect of each condition in the decision.

Test cases must be identified for all possible values of each condition. For multiple condition
decisions, a separate test case is needed for each combination where any condition has an
independent effect on the final decision. The test cases may be selected from the pool of
requirements based test cases. If a test case does not yet exist, then one is created. Once the
decision table and all pairs tables are complete, then the MC/DC requirement will have been met
for a functional unit.

C.5.1.2.2 Decision Coverage

Satisfying the requirement for decision coverage entails that test cases drive each decision in
the code to every possible outcome. Since this is already done to satisfy MC/DC, test cases that
satisfy that coverage will also satisfy Decision Coverage. This is consistent with the Structure-
based Test Type Matrix given in (ref. C.10) and reproduced in Section 10.

C.5.1.2.3 Statement Coverage

Statement coverage requires that every statement in a functional unit be executed at least once.
This is accomplished by using the ACT software to identify the basis set of paths through the
functional unit. According to Pressman (ref. C.11), test cases that traverse through the basis set
of paths are guaranteed to execute every statement at least once. This coverage condition is also
satisfied when MC/DC is achieved. Hence a subset of MC/DC test cases will also satisfy
statement coverage.

C.5.1.2.4 Data and control coupling coverage

Coupling measures the interconnectedness between modules in a software design and indicates
the varying degree of interdependence between modules. In the ideal case, the designer strives to
minimize the coupling between modules to no more than is specified in the software
requirements. However, the GCS Specification requires the use of data, control, and common
coupling in the design of each implementation. This is largely due to the constraint that each
implementation must run with the GCS simulator.

Common coupling is specified for passing data variables in the four global data stores.
Control coupling is specified for passing status variables between modules. Data coupling is
specified because variables such as atmospheric temperature and engine temperature are
determined in one module and used in another module. To verify the correctness of common
coupling, verifiers must first ensure that the global data stores are correctly set up. That is, the
ordering of data stores is correct and the ordering of data elements in each data stores is also
correct. This is one of the checks in the code review. Then test cases should verify that data
written to any global data store does not violate the integrity of that data store. This can be
accomplished by having the test driver check all data stores after each test run to verify that only
data elements involved in a test case are changed and all other data elements in the global data
stores are unchanged. This is one reason why the expected values files for all test cases need to
have expected values for all variables of all data stores - even though only a small subset is
actually used in any test case.

To satisfy data and control coupling coverage, it is necessary to identify data elements that are
assigned a value in one module and used in a subsequent module. To verify correctness for any
data element that couples two or more modules, it must be shown that the value generated by the

C-15

generator module is compatible with what the receiver module is expecting. This can be
accomplished by testing the input space of each input variable to a module. This is accomplished
with equivalence class test cases. Hence verifying correctness of data and control coupling is
implicitly part of equivalence class testing.

C.5.1.2.5 Summary

In summary, structure-based test cases will be implementation specific because it is based on
specific coding. Paragraph 6.4.2.1 of DO-178B requires that modified condition/decision
coverage be met. This implies that testing cover all combinations of logical variables and all
entry and exit conditions. Accordingly, enough test cases will be included to exercise all
allowable values of logical variables in the code structure. This requirement for complete logic
path coverage can be achieved partly by using ACT tool (described below) to identify all
decisions in the code. Test cases can then be created to cover decision paths not traversed by test
cases derived from equivalence classes or requirements. Traceability of test coverage to test
cases can be established by building decision tables and listing test cases that traverse the logical
path of each decision. Tests listed in this table can include those derived from the path coverage
analysis as well as those from the equivalence classes.

C.5.2 Test Case Execution Strategy

As previously stated, testing will be conducted based on the model from DO-178B. That is,
low-level and the integration-level testing will be performed. This method is similar to what
Myers describes as non-incremental testing. That is, tests for each GCS low-level functional unit
will be independent. Test cases at this level, as stated before, will be requirements- and structure-
based. Each unit will be tested using a driver to call the unit with the appropriate inputs.
However, non-incremental testing, as described by Myers, implies the integration step links all
the modules together in one step. For the GCS project, instead of linking all modules together in
one step, bottom-up integration will be used. The functional units associated with each of the
three subframes will first be integrated and tested. Then the three subframes can be integrated
and tested. The two levels of integration testing are described below in subframe and frame
testing.

C.5.2.1 Low-Level Testing

Low-level testing will concentrate on ensuring that low-level requirements are met by the
software functional units. These units, as identified by the GCS Specification are AECLP,
ARSP, ASP, CP, CRCP, GP, GSP, RECLP, TDLRSP, TDSP, and TSP. The Low-Level
Requirements are those dealing with the functional unit requirements as well as organization and
integrity of the Data Stores. This suite will include normal range as well as robustness test cases.
Where appropriate, tests at this level will:

• test algorithms to see if they satisfy the requirements
• test loop operations
• test logic decisions
• test for missing or corrupted input conditions
• test that exceptional conditions are detected and handled correctly
• test the sequence of computations
• test the algorithm precision and accuracy
• check that array bounds are not exceeded (using the compiler option: /check)

This level of testing is considered complete when all test cases are executed and the test
outputs analyzed for accuracy and correctness as defined for each test case (see test case format).

C-16

C.5.2.2 Software Integration Testing

The Software Integration-level testing will address integration of the functional units into
processing blocks that occur during subframes and frames in the simulation. To ensure that
integration requirements are met, software integration testing will take place in the following
order:

• Subframe processing
• Frame and Trajectory processing

Subframe testing will verify that functional units interact according to the software
architecture (data and control flow) and the GCS Specification. The three subframes in each GCS
implementation are Sensor Processing (SP), Guidance Processing (GP), and Control Law
Processing (CLP). Once subframes are built, tests will:

• ensure that functional units are called in the correct order
• ensure that the rendezvous routine (GCS_SIM_RENDEZVOUS) is called first in each

subframe
• ensure that Temperature Sensor Processing (TSP) is called first in SP subframe
• ensure that AECLP is called before CRCP in subframe 3
• ensure that CP is called last in each subframe
• ensure that all functional units are called
• ensure correct parameter passing between units
• ensure that global data store integrity is maintained

The goal of Frame testing is to verify that each implementation will satisfy the overall

requirement of the GCS Specification to land the spacecraft. A frame is one iteration of all three
subframes. Frame testing verifies that interaction between subframes is as prescribed in the GCS
Specification and software design. Frame integration testing will link the subframes and perform
testing that will:

• ensure proper system initialization or proper handling of incorrect initialization
• ensure that the subframes are executed in the correct sequence during a frame
• ensure that multiple frames can be executed consecutively
• ensure that an implementation can follow a given trajectory to landing

C.5.3 Test Output Review

Each Verification Analyst must verify the accuracy of the results of the test cases as required
by DO-178B. A test log will be kept documenting each test run. Upon completion of the tests, a
test output review is performed to find discrepancies between the expected result and the actual
result. Any anomalies will be scrutinized by the Verification Analysts to determine if the
problem is in the code or the test case. If correction is necessary, a problem report should be used
to document and correct the anomalies. In cases where the anomaly warrants no further action,
that decision must be documented in the test log. If the test case is found to be in error, a Support
Documentation Change Report should be used to correct the error in the test case.

The Problem Reports are given to the software quality assurance personnel for review and
relayed to the programmer or verification analyst for correction. When problem reports return to
the verification analyst, the test case that revealed the error must be re-executed along with all test
cases associated with the corrected code. It is also necessary to re-execute all test cases
associated with any other module that has been updated. If the test case was in error, only the test

C-17

case has to be re-executed. If there are several problem reports generated in a testing phase, it is
the responsibility of the verification analyst to determine the sequence of repairs.

C.6 Verification Environment and Tools

According to Paragraph 6.4.1 of DO-178B, the best environment to test the software is the
target environment. The target environment on which each GCS implementation is required to
run is the computer that executes the GCS Simulator. The Software Life Cycle Environment
Configuration Index provides more information on the configuration of the target environment.
All testing will be performed on this computer; though not all test cases will require running with
the Simulator.

To independently verify the correctness of calculations produced during testing, Mathematica
(ref. C.12) will be used to model the computations of each function unit and calculate the
expected results. Mathematica is a software package useful for mathematical modeling and
calculations. It is available to GCS project on the SUN platform. Mathematica allows complex
computations to be placed in a file so that the calculations can be repeated for different data sets.
The model of each functional unit will be implemented in this manner.

For test cases which generate output that, according to DO-178B, must be compared with
independently calculated values, the Verification Analysts will develop a program that compares
the test output with the expected values derived from Mathematica models. This analysis
program will generate a comparison file which can then be evaluated for problems.

The tool, ACT (ref. C.8), is based on McCabe's Cyclomatic Complexity Metric Method (ref.
C.13). It will be used to identify all possible paths through the code of each functional unit. As
previously described, this will be used for structure-based test case development and Structural
Coverage Analysis. The output of interest from this software is the graph of the decision tree
from the source code. It will be used to identify any untested decisions and also for
documentation purposes.

Generic test drivers will be developed by the Verification Analysts to automate the testing.
Drivers will also be used to test for defects outlined in Paragraph 6.4.3.

The FORTRAN Debugger is available for use in the event it is necessary to determine whether
failure of a test case execution is due to the test setup or the actual code. It can be used during
integration testing for test cases in the requirements and structural categories. It allows tracking
transaction flow through subframes and frames. The Debugger can also be used to verify that test
cases for statement, decision, and condition coverage are executing the intended target code.

C.7 Transition Criteria

This section describes the condition for progressing verification activities. As previously
stated, verification activities are initiated for the artifacts of the software development processes.
The three artifacts from the development processes involved are the design, the source code, and
the executable modules. Transition criteria deals with the issue of when the verification activities
associated with these artifacts are considered completed.

For the GCS project, the first artifact subject to verification is the design for an
implementation. Hence the design review is the first activity and must be completed before the
development can proceed to the coding process. The design review is considered completed
when all deficiencies indicated in problem reports have been addressed and approved.

C-18

The code review takes place after coding is complete; that is, when the programmer is satisfied
that his source code implements the design and the source code cleanly compiles. Note that due
to the experimental aspects of the project, programmers are not allowed to execute their source
code. The code review is complete also when all reported deficiencies are addressed and
approved.

Independent of the GCS development is the test case development activities. To ensure a
sufficient test suite to satisfy DO-178B testing criteria, a test readiness review will be conducted.
The purpose of the test readiness review is to ensure that all the test coverage requirements are
met and test cases are documented properly in the traceability matrix and the equivalence class
table.

Once the code review and the test readiness review are completed, testing can commence.
Testing is conducted according to the strategy outlined above. Testing is considered complete
when all test cases have been executed with no errors detected.

C.8 Reverification Activities

As previously stated, the ultimate objective of verification activities is to identify any
deviations between the system specification and the artifacts of the software development
processes. Once the corrections are made to the artifacts, the verification procedure must be
repeated to ensure that the original deficiencies are corrected and that no new problems are
introduced during the correction.

For the GCS project, reverification will occur for both reviews and testing. For the design and
code review, each deficiency that needs attention will be indicated on a problem report. The
corrections made to the design or code are listed on an action report. The verification analyst
who initiated the problem report must re-inspect the artifact to ensure all items on the problem
report have been addressed correctly. Further, the entire artifact should be reviewed to ensure
that the changes do not introduce any conflicts with the original parts.

Testing of the executables will also generate problem reports for bugs discovered during
testing. Once the code is debugged, the verification analyst should re-execute the test case(s) that
revealed the bugs. In addition, all test cases associated with the unit of level of integration being
tested need to be re-executed.

C-19

C.9 Requirements Traceability Matrix

Functional Requirements DESIGN CODE TEST CASES
0-1 Specify four separate, globally accessible data stores:
EXTERNAL,
GUIDANCE_STATE,
RUN_PARAMETERS, and
SENSOR_OUTPUT.

2-1 Control flow of the frame processing.

2-1.1 The appropriate control flow for a frame is:
 call to GCS_SIM_RENDEZVOUS.
 Satisfy the Sensor Processing subframe requirements (2-2).
 call to GCS_SIM_RENDEZVOUS.
 Satisfy Guidance Processing subframe requirements (2-3).
 call to GCS_SIM_RENDEZVOUS
 fulfill Control Law Processing subframe requirements (2-4)
 or terminate (2-1.2).

2-1.2 The implementation is to terminate immediately upon completion of the Control
Law Processing subframe requirements during the frame in which GP_PHASE is set to 5.

2-2 Sensor Processing subframe requirements.

2-2.1 Satisfy the TSP requirements (2.1.5) prior to fulfilling any of the other
requirements in (2.1.1 and 2.1.4).

2-2.2 Satisfy all requirements in the sensor processing requirements hierarchy
(2.1).

2-2.3 Satisfy all requirements in the communications processing requirements (2.4)
upon satisfying 2-2.1.

2-2.4 Adhere to the functional unit scheduling in Table 4.3 of the GCS specification.

2-3 The Guidance Processing subframe requirements.

2-3.1 Satisfy all requirements in the guidance processing requirements (2.2).

2-3.2 Satisfy all requirements in the communications processing requirements (2.4)
upon satisfying 2-3.1.

2-4 The Control Law Processing subframe requirements.

2-4.1 Satisfy the AECLP requirements (2.3.1) prior to fulfilling any of the CRCP
requirements (2.3.3).

2-4.2 Satisfy all requirements in the control law processing requirements hierarchy
(2.3).

2-4.3 Satisfy all requirements in the communications processing requirements (2.4)
upon satisfying 2-4.1.

2-4.4 Adhere to the functional unit scheduling in Table 4.3 of the GCS specification.

2.1 SP -- Sensor Processing

2.1.1 ASP -- Accelerometer Sensor Processing

2.1.1-1 Rotate variables.

2.1.1-2 Adjust gain for temperature.

2.1.1-3 Remove characteristic bias.

2.1.1-4 Correct for misalignment.

2.1.1-5 Determine Accelerations.

2.1.1-5.1 Acceleration based on current A_COUNTER.

2.1.1-5.2 Acceleration based on mean of previous accelerations.

2.1.1-6 Determine Accelerometer Status

2.1.1-6.1 A_STATUS = healthy

2.1.1-6.2 A_STATUS = unhealthy

2.1.2 ARSP -- Altimeter Radar Sensor Processing

2.1.2-1 Rotate variables.

C-20

2.1.2-2 Determine altitude when echo is received. (based on AR_COUNTER)

2.1.2-3 Determine altitude when echo is not received

2.1.2-3.1 Determine altitude based on third-order polynomial.

2.1.2-3.2 Determine altitude based on previous calculation.

2.1.2-4 Set altimeter radar status.

2.1.2-4.1 AR_STATUS = healthy

2.1.2-4.2 AR_STATUS = failed

2.1.2-5 Set values of K_ALT.

2.1.2-5.1 K_ALT = 1

2.1.2-5.2 K_ALT = 0

2.1.3 TDLRSP -- Touch Down Landing Radar Sensor Processing

2.1.3-1 Rotate variables

2.1.3-2 Determine state for each radar beam.

2.1.3-2.1 TDLR_STATE = unlocked.

2.1.3-2.2 TDLR_STATE = locked.

2.1.3-3 Determine Whether to set FRAME_BEAM_UNLOCKED

2.1.3-3.1 Set FRAME_BEAM_UNLOCKED to FRAME_COUNTER

2.1.3-3.2 Leave FRAME_BEAM_UNLOCKED unchanged

2.1.3-4 Calculate the beam velocities

2.1.3-5 Process beam velocities based on which beam(s) locked.

2.1.3-5.1 no beams locked

2.1.3-5.2 Beam1 locked

2.1.3-5.3 Beam2 locked

2.1.3-5.4 Beam3 locked

2.1.3-5.5 Beam4 locked

2.1.3-5.6 Beam1 & Beam2 locked

2.1.3-5.7 Beam1 & Beam3 locked

2.1.3-5.8 Beam1 & Beam4 locked

2.1.3-5.9 Beam2 & Beam3 locked

2.1.3-5.10 Beam2 & Beam4 locked

2.1.3-5.11 Beam3 & Beam4 locked

2.1.3-5.12 Beam1, Beam2, & Beam3 locked

2.1.3-5.13 Beam1, Beam2, & Beam4 locked

2.1.3-5.14 Beam1, Beam3, & Beam4 locked

2.1.3-5.15 Beam2, Beam3, & Beam4 locked

2.1.3-5.16 Beam1, Beam2, Beam3, & Beam4 locked

2.1.3-6 Convert to body velocities.

2.1.3-7 Set values in K_MATRIX.

2.1.3-7.1 Kx = 0

2.1.3-7.2 Kx = 1

2.1.3-7.3 Ky = 0

2.1.3-7.4 Ky = 1

2.1.3-7.5 Kz = 0

2.1.3-7.6 Kz = 1

2.1.3-8 Set TDLR_STATUS.

2.1.4 GSP -- Gyroscope Sensor Processing

2.1.4-1 Rotate variables.

2.1.4-2 Determine the vehicle rotation rates along each of the vehicle's three axes.

2.1.4-2.1 Adjust gain.

2.1.4-2.2 Convert G_COUNTER.

C-21

2.1.4-3 Set gyroscope status to healthy.

2.1.5 TSP -- Temperature Sensor Processing

2.1.5-1 Calculate solid state temperature

2.1.5-2 Calculate Thermal Temperature

2.1.5-3 Determine which Temperature to use (SS or Thermocouple)

2.1.5-3.1 Calculate the Thermo sensor upper limit

2.1.5-3.2 Calculate the Thermo sensor lower limit

2.1.5-4 Determine Atmospheric Temperature

2.1.5-5 Set status to healthy.

2.1.6 TDSP -- Touch Down Sensor Processing

2.1.6-1 Determine status of touch down sensor.

2.1.6-2 Determine whether touch down has been sensed.

2.2 GP -- Guidance Processing

2.2-1 Rotate variables.

2.2-2 Determine the attitude, velocities, and altitude.

2.2-2.1 Set up the GP_ROTATION matrix.

2.2-2.2 Calculate new values of attitude, velocity, and altitude.

2.2-3 Determine if the engines should be on or off.

2.2-3.1 Engines on

2.2-3.2 Engines off

2.2-4 Set FRAME_ENGINES_IGNITED

2.2-5 Determine velocity error.

2.2-6 Determine optimal velocity

2.2-7 Determine if contour has been crossed.

2.2-8 Determine guidance phase.

2.2-8.1 GP_PHASE = 1

2.2-8.2 GP_PHASE = 2

2.2-8.3 GP_PHASE = 3

2.2-8.4 GP_PHASE = 4

2.2-8.5 GP_PHASE = 5

2.2-9 Determine which set of control law parameters to use.

2.2-9.1 CL = 1

2.2-9.2 CL = 2

2.3 CLP -- Control Law Processing

2.3.1 AECLP -- Axial Engine Control Law Processing

2.3.1-1 Generate the appropriate axial engine commands when AE_CMD=ON.

2.3.1-1.1 Determine engine temperature

2.3.1-1.1.1 AE_TEMP = COLD

2.3.1-1.1.2 AE_TEMP = WARM

2.3.1-1.1.3 AE_TEMP = HOT

2.3.1-1.2 Compute limiting errors for pitch

2.3.1-1.3 Compute limiting error for yaw

2.3.1-1.4 Compute limiting error for thrust

2.3.1-1.5 Compute pitch, yaw, and thrust errors.

2.3.1-1.5.1 CHUTE_RELEASED = 1

2.3.1-1.5.2 CHUTE_RELEASRD = 0

2.3.1-1.5.3 CONTOUR_CROSSED = 1

2.3.1-1.5.4 CONTOUR_CROSSED = 0

2.3.1-1.6 Compute INTERNAL_CMD

2.3.1-1.7 Compute axial engine valve settings (AE_CMD).

C-22

2.3.1-1.7.1 when INTERNAL_CMD < 0.0

2.3.1-1.7.2 when 0.0 £ INTERNAL_CMD ≥ 1.0

2.3.1-1.7.3 when 1.0 < INTERNAL_CMD

2.3.1-2 Generate the appropriate axial engine commands when AE_CMD=OFF.

2.3.1-2.1 Set AE_CMD = 0

2.3.1-3 Set axial engine status to healthy.

2.3.2 RECLP -- Roll Engine Control Law Processing

2.3.2-1 Generate the appropriate roll engine command.

2.3.2-2 Set roll engine status to healthy.

2.3.3 CRCP -- Chute Release Control Processing

2.3.3-1 Determine appropriate parachute release command.

2.3.3-1.1 AE_TEMP = COLD

2.3.3-1.2 AE_TEMP = WARM

2.3.3-1.3 AE_TEMP = HOT

2.3.3-1.4 CHUTE_RELEASED = 0

2.3.3-1.5 CHUTE_RELEASED = 1

2.4 CP -- Communications Processing

2.4-1 Set communicator status to healthy.

2.4-2 Get synchronization pattern.

2.4-3 Determine sequence number.

2.4-4 Prepare sample mask.

2.4-4.1 Subframe 1 mask

2.4-4.2 Subframe 2 mask

2.4-4.3 Subframe 3 mask

2.4-5 Prepare data section.

2.4-5.1 Use subframe 1 data

2.4-5.2 Use subframe 2 data

2.4-5.3 Use subframe 3 data

2.4-2.5 Calculate checksum.

C.10 Structure-based Test Type Matrix

The following matrix is reproduced from a presentation titled "Testing Techniques" given by
Steve Paasch at the FAA-ACS Software Standardization Conference. It is included in this
document to support the assertion made in the test coverage section that Modified
Condition/Decision Coverage is a super set of Decision Coverage, Condition Coverage, and
Decision/Condition Coverage.

C-23

Table C.1. Structure-based test type matrix.
 Every path

executed
Every

statement
executed at
least once

Each decision
takes on each
possible outcome
at least once

Each entry & exit
point invoked at
least once

Each condition in
a decision takes
on each possible
outcome once

Each condition
shown to
independenty effect
decision outcome

Each combinition of
conditions in a
decision takes on each
possible outcome
once

Path Coverage
Statement
Coverage

Decision
Coverage

Condition
Coverage

Decision/
Condition
Coverage

Modified
Condition/
Decision
Coverage

Multiple
Condition
Coverage

C.11 References

C.1. Finelli, George B.: Results of Software Error-Data Experiments. In AIAA/AHS/ASEE
Aircraft Design, Systems and Operations Conference, Atlanta, GA, September 1988.

C.2. "Software Considerations in Airborne Systems and Equipment Certification", Document
No. RTCA/DO-178B, Dec. 1992.

C.3. Myers, Glenford J., The Art of Software Testing, ,Wiley-Interscience Pub. N.Y., N.Y.,
1979.

C.4. Derek J. Hatley and Imtiaz A. Pirbhai. Strategies for Real-Time System Specification ,
Dorset House Publishing Company, New York, New York, 1987.

C.5. De Marco, Tom. Structured Analysis and System Specification. Prentice-Hall, Englewood
Cliffs, N.J., 1978.

C.6. Ward, Paul T., and Stephen J. Mellor. Structured Development for Real-Time Systems.
Prentice-Hall, Englewood Cliffs, N.J., 1985.

C.7. teamwork/SA teamwork/RT User's Guide, Release 4.0. Cadre Technologies Inc. 1990.

C.8. Analysis of Complexity Tool User's Instructions, McCabe Associates Inc., Redwood
City, Ca.,1992

C.9. Chilenski, John Joseph, Miller, Steve P.; Applicability of Modified Condition/Decision
Coverage to Software Testing; The Boeing Company, and Rockwell International
Corporation.

C.10. Paasch, Steve; "Testing Techniques"; FAA ACS-Software Standardization Conference;
July 26-28, 1994.

C-24

C.11. Pressman, Roger S. Software Engineering, A Practitioner's Approach; McGraw-Hill Inc.
N.Y., N.Y.;1992.

C.12. Wolfram, Stephen,. Mathematica, A System for Doing Mathematics by Computer,
Second Edition. Addison-Wesley Publishing Company, Inc., 1991

C.13. McCabe, Thomas j., Structural Testing: A Software Testing Methodology Using the
Cyclomatic Complexity Metric, McCage & Associates, Inc, 1982.

D-1

Appendix D: Software Configuration Management Plan for the
Guidance and Control Software Project

Authors: Laura J. Smith, Kelly J. Hayhurst, NASA Langley Research Center

This document was produced as part of Guidance and Control Software (GCS) Project conducted at
NASA Langley Research Center. Although some of the requirements for the Guidance and Control
Software application were derived from the NASA Viking Mission to Mars, this document does not
contain data from an actual NASA mission.

D-2

D. Contents

D.1 INTRODUCTION ...D-5

D.1.1 THE ROLE OF SCM IN THE GCS PROJECT .. D-5
D.2 SCM ENVIRONMENT...D-8

D.2.1 CMS DESCRIPTION .. D-10
D.2.1.1 CMS Libraries... D-12
D.2.1.2 Procedures for Using CMS ... D-13

D.2.2 TEAMWORK ... D-14
D.2.3 OTHER SCM TOOLS... D-14

D.3 SCM ACTIVITIES..D-14

D.3.1 CONFIGURATION IDENTIFICATION.. D-15
D.3.2 BASELINES AND TRACEABILITY ... D-15
D.3.3 PROBLEM AND CHANGE REPORTING.. D-18

D.3.3.1 Problem Reporting for Development Products ... D-19
D.3.3.2 Instructions for Problem and Action Reports.. D-19
D.3.3.3 Number System for the Problem and Action Reports .. D-20
D.3.3.4 Problem Reporting for Support Documentation ... D-21

D.3.4 CHANGE CONTROL... D-22
D.3.5 CHANGE REVIEW ... D-28
D.3.6 CONFIGURATION STATUS ACCOUNTING .. D-29
D.3.7 ARCHIVE, RETRIEVAL AND RELEASE ... D-30
D.3.8 SOFTWARE LOAD CONTROL... D-30

D.4 TRANSITION CRITERIA...D-30

D.5 SCM DATA..D-32

D.6 SUPPLIER CONTROL ..D-32

D.7 FORMS..D-32

COMPLETING THE PROBLEM REPORT FORM ... D-32
COMPLETING THE ACTION REPORT FORM .. D-34
COMPLETING THE SUPPORT DOCUMENTATION CHANGE REPORT FORM .. D-34
COMPLETING THE CONTINUATION FORM ... D-35

D-3

D. List of Tables

D.1. DO-178B LIFE CYCLE DATA FOR THE GCS PROJECT ...D-7

D.2. SCM ACTIVITIES FOR CONTROL CATEGORY 1 AND CONTROL CATEGORY 2D-7

D.3. SUPPORT DOCUMENTATION..D-9

D.4. DEVELOPMENT PRODUCTS ..D-9

D.5. RECORDS, RESULTS, AND REPORTS ..D-9

D.6. DO-178B LIFE CYCLE DATA AND ORGANIZATIONAL RESPONSIBILITIES...........................D-10

D.7. CMS LIBRARIES FOR PROJECT DATA ...D-12

D.8. CONFIGURATION IDENTIFICATION FOR THE DO-178B LIFE CYCLE DATA........................D-16

D.9. MILESTONES FOR DESIGN ..D-17

D.10. MILESTONES FOR SOURCE CODE ..D-18

D.11. TRANSITION CRITERION FOR PROJECT DATA..D-31

D.12. INFORMATION FOR ARTIFACT IDENTIFICATION...D-33

D-4

D. List of Figures

D.1. GCS PROBLEM REPORT FORM ..D-23

D.2. GCS ACTION REPORT FORM ..D-24

D.3. FLOW OF PROBLEM REPORTING PROCESS FOR THE DEVELOPMENT PRODUCTSD-25

D.4. SUPPORT DOCUMENTATION CHANGE REPORT FORM...D-26

D.5. FLOW OF CHANGE REPORTING PROCESS FOR THE SUPPORT DOCUMENTATION.........D-27

D.6. REPORT CONTINUATION FORM..D-36

D-5

D.1 Introduction

According to the RTCA/DO-178B "Software Considerations in Airborne Systems and
Equipment Certification", configuration management is the "process of identifying and defining
the configuration items of a system, controlling the release and change of these items throughout
the software life cycle, recording and reporting the status of configuration items and change
requests, and verifying the completeness and correctness of configuration items" (ref. D.2). This
configuration management plan establishes the methods to be used to achieve the objectives of
the software configuration management (SCM) process throughout the software life cycle for the
Guidance and Control Software (GCS) project in accordance with the DO-178B guidelines.
Specifically, this document provides a description of the SCM environment that will be used
throughout the GCS project (including the methods, tools, standards, and procedures) and a
description of the SCM activities in the software life cycle.

As described in Subsection 7.1 of the DO-178B guidelines, the SCM process, along with the
other software life cycle processes, assists in meeting the following general objectives for the
certification authority:

• provide a defined and controlled configuration of the software throughout the software life
cycle;

• provide the ability to consistently replicate the executable object code or to regenerate it if
needed;

• provide control of process inputs and outputs during the software life cycle that ensures
consistency and repeatability of process activities;

• provide a known point for review, assessing status, and change control by establishing
baselines for configuration items;

• provide controls that ensure problems receive attention and changes are recorded, approved,
and implemented;

• provide evidence of approval for the software;

• aid the assessment of the software product compliance with requirements; and

• ensure that secure physical archiving, recovery and control are maintained for the
configuration items.

D.1.1 The Role of SCM in the GCS Project

The GCS project involves independent production of two implementations of a guidance and
control application where the development process for each implementation follows the DO-
178B guidelines. The two GCS implementations are referred to by planetary names: Mercury
and Pluto. When there is a need to distinguish multiple implementations, the word planet will be
used to refer to Mercury or Pluto. For this project, the configuration environment and activities
must provide for the management of the life cycle data for one set of development processes and
must also provide a mechanism to preserve the independence of the life cycle data for the
multiple implementations. This plan will address the configuration management process for life
cycle data from both GCS implementations.

According to Uczekaj and Hughes of Honeywell (ref. D.3), a configuration management
system is a tool that is critical for tracking all phases of the software development cycle. A

D-6

detailed description of the software development cycle for the GCS project is found in the Plan
for Software Aspects of Certification. As described in that document, the development of three
GCS implementations was started at the Research Triangle Institute (RTI), along with the
generation of the documentation of the software development process (ref. D.1). The original
software development processes for the GCS project included the following:

• software design,

• software coding, and

• integration.

All three RTI-developed implementations of the GCS were developed under the DO-178A
guidelines and went through the design and coding processes. Due to a number of factors, the
project was transferred to NASA Langley Research Center to complete under the DO-178B
guidelines. Upon delivery to NASA, new development teams were assigned and the project
restarted with a review of the software requirements. Consequently, the software development
processes for the in-house GCS project will include the following processes (see the Plan for
Software Aspects of Certification for more details):

• transitional software requirements development (focusing on the review and modification of
the existing software requirements),

• transitional software design,

• software coding, and

• integration.

At the end of the transitional software requirements development process, Version 2.2 of the
Software Requirements Data, referred to as the GCS specification, was created. The transitional
software design process is complete when the design has been verified and approved by the SQA.
The coding process is complete when the code has been verified and approved by the SQA.
Integration is broken down into two types of testing: functional (consisting of unit testing,
subframe testing, frame testing, and trajectory testing) and structural. The integration process
ends when the functional and structural testing are complete.

For the GCS project, the general plan for configuration management is to use a set of software
tools, already available at Langley, and some paper forms to identify, control, baseline, and
archive all life cycle data associated with the development of the GCS implementations. Table
D.1 gives a list of the life cycle data for the GCS project as discussed in Section 11 of the DO-
178B guidelines. This life cycle data consists of planning and support documents and the actual
products from the software development process (e.g., design description and source code).
Configuration management is responsible for maintaining all changes made to this life cycle data
throughout the GCS project.

Since the guidance and control software is classified as Level A software according to DO-
178B, Control Category 1 (CC1), described in Subsection 7.3 of DO-178B, will be applied to the
necessary software life cycle data. Table D.1 shows the life cycle data and its associated control
category (CC1 or CC2). In accordance with the control categories, the SCM process for the GCS
project must provide for the objectives listed in Table D.2. All of the processes listed in Table
D.2 will be managed through the use of software tools, with the exception of the problem
reporting process. Problem reporting will be managed by paper forms and is discussed in detail
later in this document.

D-7

Table D.1. DO-178B Life Cycle Data for the GCS Project

Software Life Cycle Data
Subsection
Reference

in DO-178B

Control

Category

Plan for Software Aspects of Certification 11.1 1

Software Development Plan
Software Design Standards
Software Code Standards
Software Requirements Standards

11.2
11.7
11.8
11.9

1
1
1
1

Software Verification Plan 11.3 1

Software Configuration Management Plan 11.4 1

Software Quality Assurance Plan 11.5 1

Software Requirements Data 11.6 1

Design Description 11.10 1

Source Code 11.11 1

Executable Object Code 11.12 1

Software Verification Cases and Procedures 11.13 1

Software Verification Results 11.14 2

Software Configuration Index
Software Life Cycle Environment Configuration Index

11.16
11.15

1
1

Problem Reports 11.17 2

Software Configuration Management Records 11.18 2

Software Quality Assurance Records 11.19 2

Software Accomplishment Summary 11.20 1

The following chapter describes the software configuration management environment for the

GCS project and gives a general overview of the primary tools used in the development cycle.

Table D.2. SCM Objectives for Control Category 1 and Control Category 2

SCM Process Objective DO-178B Subsection reference CC1 CC2

Configuration Identification 7.2.1 • •

Baselines 7.2.2 a, b, c, d, e •

Traceability 7.2.2 f, g • •

Problem Reporting 7.2.3 •

Change Control -- integrity and identification 7.2.4 a, b • •

D-8

Change Control -- tracking 7.2.4 c, d, e •

Change Review 7.2.5 •

Configuration Status Accounting 7.2.6 •

Retrieval 7.2.7 a • •

Protection against Unauthorized Changes 7.2.7 b(1) • •

Media Selection, Refreshing, Duplication 7.2.7 b(2), (3), (4), c •

Release 7.2.7 d •

Data Retention 7.2.7 e • •

D.2 SCM Environment

According to Subsection 7.2 of DO-178B, configuration management should be provided
throughout the software development process for configuration identification, change control,
baseline establishment, and archiving of the software life cycle data. This chapter describes the
SCM environment to be used for the GCS project, including descriptions of procedures, tools,
methods, standards, organizational responsibilities, and interfaces.

Since the development of the GCS implementations is part of a research project, the
development environment for the software is the same as the target environment of the
implementations; that is, the GCS implementations will not be included in a "real" hardware
system intended for space flight. The environment for most of the software development of the
GCS implementations is a microVAX 3800 computer system running the VAX/VMS 5.5-2
operating system. This computer system is physically located at NASA Langley in Building
1220, Room 214. This computer system is referred to as "AIR19" by personnel working on this
project and will be referred to as such in project documentation.

For the GCS project, the VAX DEC/Code Management System (CMS) will be used as the
primary tool to aid in the configuration management activities. CMS will be used for the
configuration management of all life cycle data shown in Table D.1 (with the exception of the
Problem Reports, Software Configuration Management Records and Software Quality Assurance
Records) and other software artifacts related to the project, including the GCS simulator and its
user's guide. In general, the DO-178B life cycle data for the development of the GCS
implementations can be divided into three different categories: support documentation (shown in
Table D.3); development products (shown in Table D.4); and records, results, and reports (shown
in Table D.5). The support documentation and the development products are under CC1; the
records, results, and reports are under CC2.

D-9

Table D.3. Support Documentation

Plan for Software Aspects of Certification
Software Development Plan
Software Verification Plan

Software Configuration Management Plan
Software Quality Assurance Plan
Software Requirements Standards

Software Design Standards
Software Code Standards

Software Requirements Data
Software Verification Cases and Procedures

Software Life Cycle Environment Configuration
Index

Software Configuration Index
Software Accomplishment Summary

Table D.4. Development Products

Design Description
Source Code

Executable Object Code

Table D.5. Records, Results, and Reports

Software Verification Results
Problem Reports

Software Configuration Management
Records

Software Quality Assurance Records

Table D.6 shows the project member who is responsible for each element of the life cycle
data. Since two GCS implementations are being independently developed, there will be data
from each implementation in some cases. For example, each implementation will have its own

D-10

source code (e.g., Mercury Source Code and Pluto Source Code). The data that will be replicated
for each implementation are denoted with a * in Table D.6.

Table D.6. DO-178B Life Cycle Data and Organizational Responsibilities

Software Life Cycle Data Project Member Responsible for that Data

Plan for Software Aspects of Certification Project Leader

Software Development Plan Project Leader

Software Requirements Standards Project Leader

Software Design Standards Project Leader

Software Code Standards Project Leader

Software Accomplishment Summary Project Leader

Software Verification Plan Verification Analysts

Software Verification Cases and Procedures* Verification Analysts

Software Verification Results* Verification Analysts

Software Configuration Management Plan Configuration Manager

Software Life Cycle Environment Configuration Index Configuration Manager

Software Configuration Index Configuration Manager

Software Configuration Management Records Configuration Manager

Software Quality Assurance Plan Software Quality Assurance Representative

Problem Reports* Software Quality Assurance Representative

Software Quality Assurance Records* Software Quality Assurance Representative

Software Requirements Data System Analyst

Design Description* Programmer

Source Code* Programmer

Executable Object Code* Programmer

The following section gives a general overview of the CMS tool as it will be used on the GCS

project, and the procedures for its use.

D.2.1 CMS Description

CMS is an on-line library system (located on AIR19, the microVAX 3800 computer system)
that helps track the software development process. A CMS library is a VMS directory that
contains specially formatted files. CMS stores files called elements in a library, tracks changes
made to these elements, and monitors access to the elements. An element may contain text,
source code, object code, test cases, etc. To help preserve the integrity of the configured items,
direct access to the CMS libraries is limited to the configuration manager and the project leader.

D-11

The configuration manager has the primary responsibilities for all configuration management
activities; however, the project leader will have full access to the CMS libraries in order to
perform the configuration manager's duties in case of an emergency. Further information on
change control is contained in the section "Change Control".

The basic structural unit of a CMS library is called an element. An element consists of one file
and all of the file's successive versions. A generation of an element is a specific version of that
element. The first element that is created and placed into a library is version one of that element;
each time an element is reserved and replaced into the CMS library, a new generation of that
element is created. CMS stores the entire text of the first generation of the element. For each
successive generation of that element, CMS stores only the lines that change from one generation
to the next.

Elements can be combined into groups which are manipulated as a single unit. For example,
an element could be a single test case developed to test a functional unit and a group could be all
of the test cases to test that module. Even if an element is in a group, the element can still be
manipulated on an individual basis. A group may consist of other groups; but a group may not be
a member of itself. Specific generations of elements can be clustered into a class and
manipulated as a single unit. For example, the Post-Code Review class could represent the
specific generations of elements that comprise the code resulting after the Code Reviews. Only
one generation of an element can be in a class, but each element can have a different generation
number indicating that some elements have been modified more than others. Classes will be used
to identify the software life cycle data at specific phases in the development process.

A reference copy directory has been established for each CMS library. A reference copy
directory is a nonlibrary directory that contains the latest generation of each element; CMS
automatically updates the reference copy directory every time a new generation of an element is
created. CMS also maintains a delta file for each element stored in a library. A delta file is a file
that contains the contents of all of the generations of a single element; it contains the actual data
and the control records. The control records tell CMS which data records are valid for which
specific generation of the element. Backup information is maintained by CMS which allows
CMS to recover from an incomplete transaction in the event of a system failure.

CMS manages the change process by using a system of reservations and replacements. Since
most participants of the GCS project do not have direct access the CMS libraries, only a few basic
commands need to be known to communicate with the configuration manager about their life
cycle data. For more information about available CMS commands, refer to the Guide to
VAX/DEC Code Management System (ref. D.4). Knowledge of the following commands will be
helpful in understanding the procedures for configuration management of the GCS life cycle data.

Fetch -- A copy of one or more specified element generations is placed in a directory for use by
the project participant. No changes are made to the element within the CMS library. For
example, a copy of the element generations that comprise the version of code to be reviewed
at the Code Review may be fetched for all participants in the Code Review to examine in
preparation for the Review.

Reserve -- A copy of one or more specified element generations is placed in a directory so that it
can be modified by the project participant. The latest version of the element will be reserved
unless otherwise specified. After the file has been modified, the file should be returned to the
library (using the replace command) and the changes will be made to the library copy and the
reference copy. As an example for this command, a programmer should reserve a particular
element of source code in order to make a change in response to a Problem Report.

D-12

Replace -- An element that has been reserved can be replaced to the CMS library. The element
that is replaced may be completely different from the element that was reserved. A new
generation of that element is created. As in the example where the programmer has reserved
an element to make a change in response to a Problem Report, the element will be replaced
after the SQA representative has signed the PR indicating all necessary changes have been
made.

Unreserve -- If the wrong element has been reserved, the element can be unreserved without
changing the library element.

Once an element has been placed under configuration control, there must be a valid

justification to change that element. If an element needs to be changed, it must be reserved,
changed, and replaced. When an element generation is reserved from a CMS library, a
reservation exists. This reservation ends when the generation is replaced or unreserved. If the
element is replaced, the contents in the CMS library are updated; if the element is unreserved, no
new generation is created and CMS records the cancellation in the library history. The unreserve
command is useful if the wrong element has been reserved.

Every action that takes place in the CMS library is recorded in a history file, along with the
name of the person requesting the action, the date, and a remark. For the GCS project, the
configuration manager and the project leader are the only people who can request an action
within a CMS library. Whenever a reservation of a CMS library element is made, CMS prompts
for a remark. This remark provides a permanent record of the transaction in the library's history
file. CMS does not record transactions that do not alter the library.

D.2.1.1 CMS Libraries

Table D.7 shows the CMS library names associated with the project data.

Table D.7. CMS Libraries for Project Data

Project Data CMS Library Name

Plan for Software Aspects of Certification,
Software Development Plan

DISK$HOKIE:[GCS.CMS.CERT_PLAN]

Software Verification Plan DISK$HOKIE:[GCS.CMS.VER_PLAN]

Software Requirements Traceability Data DISK$HOKIE:[GCS.CMS.TRACE_DATA]

Software Configuration Management Plan DISK$HOKIE:[GCS.CMS.CM_PLAN]

Software Quality Assurance Plan DISK$HOKIE:[GCS.CMS.SQA_PLAN]

Software Requirements Standards,
Software Design Standards,
Software Code Standards

DISK$HOKIE:[GCS.CMS.DEV_STAND]

Software Requirements Data DISK$HOKIE:[GCS.CMS.SPEC]

Modifications to Requirements Data DISK$HOKIE:[GCS.CMS.SPEC_MODS]

Design Description* DISK$HOKIE:[GCS.CMS.DES_DESCRIP.planet]

D-13

Source Code* DISK$HOKIE:[GCS.CMS.SOURCE_CODE.planet]

Executable Object Code* DISK$HOKIE:[GCS.CMS.EXEC_OBJ_CODE.planet]

Software Verification Cases* DISK$HOKIE:[GCS.CMS.VER_CASES]

Software Verification Procedures DISK$HOKIE:[GCS.CMS.VER_PROC]

Software Verification Results* DISK$HOKIE:[GCS.CMS.VER_RESULTS.planet]

Software Life Cycle Environment Configuration Index,
Software Configuration Index

DISK$HOKIE:[GCS.CMS.CONFIG_INDEX]

Software Accomplishment Summary DISK$HOKIE:[GCS.CMS.ACCOMP_SUM]

Simulator User's Guide DISK$HOKIE:[GCS.CMS.SIMULATOR.USER_GUIDE]

Simulator Source Code DISK$HOKIE:[GCS.CMS.SIMULATOR.SOURCE_CODE]
* These project data are implementation specific. The Verification Cases library only has a few elements that are
implementation specific; therefore, there will be a naming convention to distinguish between the two
implementations.

D.2.1.2 Procedures for Using CMS

The configuration manager will use CMS libraries to manage project data. CMS can be
invoked from the DCL command level, from the CMS subsystem command level, or from the
DECwindows user interface.

In order to fetch, reserve or replace an element using CMS, it is easiest to have the directory
set to the specific directory in which the element will be placed or retrieved. The fetch command
is issued when a copy of the element is needed for examination purposes only; no changes may
be made to this copy of the element. For example, after issuing the fetch command, the element
name is entered in the appropriate place. If this transaction needs to be recorded in the history
log, a remark must be entered before the command is executed; otherwise, no transaction will be
recorded. Once the fetch command has been issued, the element will reside in the VMS default
directory that was set prior to issuing the command. The reserve and replace commands work in
a similar manner, except these transactions are always recorded in the history log, even if no
remark is entered along with the command. The reserve command places a working copy of the
element in the directory; the latest version of the element is reserved unless otherwise specified.
If the noconcurrent qualifier was issued at the time of reservation, no other reservations of that
element are allowed until after the element has been replaced. Once the reserve command has
been issued, the element name is entered, along with a remark, and then the reservation is
executed. The replace command can only be executed if a reservation exists. The replace
command, along with the element name and remark, are entered and executed. If there is more
than one version of a file in the default directory, the replace command will use the highest
version number for the replacement of an element.

The wildcard character, “*”, may be used for multiple reservations, replacements, or fetches if
the elements are similar in name. The * may be used in place of one or more characters.

The following section describes the tool Teamwork, which will be used by the programmers
for the development of their detailed designs in addition to CMS.

D-14

D.2.2 Teamwork

For the GCS project, each programmer is required to use the Computer Aided Software
Engineering (CASE) tool, Teamwork (ref. D.5), to develop the detailed design description. The
Teamwork tool is used to aid in the structured design of the applications, and certain parts of the
output from Teamwork will be required for design and code reviews. Teamwork is composed of
several tools that are available to the designer. Each programmer may choose to use any of the
following Teamwork components:

SA --- The baseline structured analysis tool (ref. D.6),

RT --- An extension of SA that allows description of real-time systems (ref. D.6), and

SD --- A parallel tool that follows the Ward and Mellor approach (ref. D.7).

The Teamwork tool provides its own configuration management capability. Each of the pieces
of the design is stored by Teamwork as individual files, and each file has a version number
appended to it. Whenever a file is changed, the old file is kept and a new file is created with a
higher version number. Teamwork also has a baselining capability which saves files with a
specific version number under a baseline name. For this project, the programmers will be
allowed to use the configuration management capabilities of Teamwork as they choose, since the
Teamwork designs will be configured using CMS at the appropriate milestone versions (see
section "Baselines and Traceability").

D.2.3 Other SCM Tools

The GCS programmers and verification analysts are required to use VAXnotes to request
CMS library elements from the configuration manager; other GCS project participants may use
any means available to request elements. For example, if a programmer needs to reserve his
source code, he should provide the configuration manager with the element name and the PR#.
The PR# is needed so that this information may be recorded in the CMS library history log. See
the Software Development Standards for more information about communication protocol.

Problem Reports, which are paper forms, will be kept in binders by the configuration manager
once the SQA representative has approved them; a binder will also be kept for the Support
Documentation Change Report forms. These binders will be physically located in the
Configuration Manager's office in Building 1220 of NASA Langley. A status log binder will also
be kept in the configuration manager's office. This binder will have transactions affecting the life
cycle data recorded in it. This is maintained as an alternative to entering CMS and searching the
history log to see when the item was configured or at what baseline the item is now under. See
the section on "Configuration Status Accounting" for more details on these binders.

For information about other tools used on the GCS project see the Software Life Cycle
Environment Configuration Index.

The following chapter describes the SCM activities to be performed during the life cycle of the
GCS project.

D.3 SCM Activities

This chapter describes the SCM activities required for the GCS project according to
Subsection 7.2 of DO-178B. The following SCM activities will be addressed in this chapter:

D-15

• configuration identification;

• baselines and traceability;

• problem and change reporting;

• change control;

• change review;

• configuration status accounting;

• archive, retrieval and release; and

• software load control.

The software life cycle environment controls are discussed in the Software Configuration
Index.

D.3.1 Configuration Identification

According to Paragraph 7.2.1 of DO-178B, the objective of the configuration identification
activity is to label unambiguously each configuration item (and its successive versions) so that a
basis is established for the control and reference of configuration items. This section describes
the methods used to identify the software life cycle data; Table D.8 gives the unambiguous labels
for each configuration item.

For the GCS project, configuration identification is established for each configuration item, for
each separately controlled component of a configuration item, and for combinations of
configuration items that comprise a software product.

The life cycle data that will be kept in CMS libraries were combined into one plan if related,
otherwise the data was maintained as an individual plan. The plans were then labeled according
to their content. For example, the Project Standards include the software standards for
requirements, design, and code. These were combined into one plan since they all involve
standards of the GCS project.

For implementation specific data, some elements in the libraries may have the same names.
Since each implementations' elements are mainly kept in separate libraries there will be no
confusion as to which elements are being referenced; however, for the verification cases, some
elements are distinguished by preceding the element name with the first letter of the planet name
followed by an underscore. For example, the guidance processing test case driver for Mercury
would be named m_test_gp.for. The source code is maintained in a CMS library named
DISK$HOKIE:[GCS.CMS.SOURCE_CODE.planet]. The programmers do not have access to
the other programmers source code so it does not matter if elements have the same name.

Table D.8 shows the configuration item labels associated with the software life cycle data; see
the section of DO-178B referenced for a description of the contents of each document.

D.3.2 Baselines and Traceability

The DO-178B guidelines define a baseline as the approved, recorded configuration of one or
more configuration items that, thereafter, serves as the basis for further development. Hence, the
objective of baseline establishment is to define the base configuration for all configuration items
in such a manner as to allow reference to, control of, and traceability between configuration
items. For the GCS project, baselines are established in CMS software libraries (by creating
classes at appropriate phases) to ensure that their integrity is maintained. The baselining

D-16

capabilities of the CMS tool will be used to group generations of files at certain major life cycle
phases. Baselines will be established for configuration items used to demonstrate that all
certification requirements have been satisfied according to DO-178B.

Table D.8. Configuration Identification for the DO-178B Life Cycle Data

Configuration Items

Software Life Cycle Data

Subsection
Reference

in DO-178B

Plan for Software Aspects of Certification Plan for Software Aspects of Certification
Software Development Plan

11.1
11.2

Verification Plan
Software Requirements Traceability Data

Software Verification Plan

11.3

Configuration Management Plan Software Configuration Management Plan 11.4

Software Quality Assurance Plan Software Quality Assurance Plan 11.5

Software Development Standards Software Requirements Standards

Software Design Standards
Software Code Standards

11.6
11.7
11.8

GCS Specification Software Requirements Data 11.9

Teamwork Model*
Design Overview*

Design Description

11.10

Source Code* Source Code 11.11

Executable Object Code* Executable Object Code 11.12

Verification Cases*
Verification Procedures

Software Verification Cases and Procedures

11.13

Software Verification Results* Software Verification Results 11.14

Software Configuration Index Software Life Cycle Environment Configuration Index

Software Configuration Index
11.15
11.16

Problem and Action Reports*
Support Document Change Reports
Formal Modifications to the
Specification**

Problem Reports

11.17

Configuration Management Records* Software Configuration Management Records 11.18

Software Quality Assurance Records* Software Quality Assurance Records 11.19

Software Accomplishment Summary Software Accomplishment Summary 11.20
* These configuration items will be implementation specific, the labels should refer to the implementation as
appropriate.
** Formal modifications 2.2-1 through 2.2-26 of the GCS Specification were not recorded on a Support
Documentation Change Report (SDCR) form. All remaining modifications to the GCS Specification will be
recorded on a SDCR form.

D-17

Baselines can be changed only through change control procedures. Specifically, baselines can
be changed only through the process of:

• recording the change,

• reviewing and evaluating the change,

• approving or disapproving the change, and

• coordinating the change.

Since the GCS project was originally started at RTI and then transferred to NASA, all of the

documents and source code as brought in from RTI are kept in a "cms_old" library so that the
capability exists to reconstruct the data as received from RTI. The support documentation, GCS
specification, and source code from RTI are maintained in three separate CMS libraries. The
support documents are kept in the library named
DISK$HOKIE:[GCS.CMS_OLD.DO178A.DOCS], the GCS specification is located in the
library DISK$HOKIE:[GCS.CMS_OLD.DO178A.SPEC], and the source code is located in the
library DISK$HOKIE:[GCS.CMS_OLD.CODE.planet]. The in-house part of the GCS project is
starting with the revision of RTI's Version 2.1 of the GCS Specification during the transitional
requirements development phase. The transitional design phase will start with RTI's Post-Code
Review version of the design. Hence, Version 2.1 of the GCS specification, and the Post-Code
Review version of the design for each implementation will be the starting point for all
development activities for the in-house GCS project.

The baselines for the design description and source code of each GCS implementation are
derived from the milestones of the development and verification processes (see the Software
Verification Plan for more details on the verification activities). In general, the design
description and source code will be baselined after the SQA representative completes the review
following the verification activity that takes place during each development phase. The
milestones will comprise the classes in the CMS libraries. For example, after the subframe test
completion review, all elements in the source code libraries will have their latest generations
clustered into a class called SF. These elements can then be manipulated as a single unit.

The Teamwork designs from each implementation are located in the CMS library
DISK$HOKIE:[GCS.CMS.DES_DESCRIP.planet] and will be baselined according to the
schedule shown in Table D.9. The source code for each implementation will be contained in
FORTRAN files, and these files are located in the CMS library
DISK$HOKIE:[GCS.CMS.SOURCE_CODE.planet] and will be baselined according to the
schedule shown in Table D.10.

Table D.9: Milestones for Design

Milestone CMS Class Name

Post-Design Review DR

Post-Code Review CR

Post-Requirements-based Test RBT

Post-Structure-based Test SBT

D-18

The design libraries will be created from the Post-Code Review version of the designs
received form RTI. The source code libraries and the executable object code libraries will start
after the design process is completed. The GCS specification library was started with RTI's
Version 2.1 of the GCS specification converted to a Microsoft Word document. All other life
cycle data will enter the configuration management process as an in-house version.

In some cases, a new baseline may be established for a support document if numerous
modifications have been made (since no predefined milestone exists). For example, when the
GCS specification was first developed, Version 1.0 was created. There were a few interim
versions of the GCS specification (Version 1.1, 1.2, etc.) created before it was classified as
Version 2.0. After verification of the GCS specification, it was updated to Version 2.0. After a
significant number of specification modifications, the GCS specification was updated to Version
2.1. Upon transfer to NASA, more modifications will be made to the GCS specification, and
Version 2.2 will be released at the end of the transitional software requirements development
phase. The library DISK$HOKIE:[GCS.CMS_OLD.DO178A.SPEC] contains Versions 1.0
through 2.1 of the GCS specification as received from RTI. The library
DISK$HOKIE:[GCS.CMS.SPEC] starts with Version 2.1 of the GCS specification.

Table D.10: Milestones for Source Code

Milestone CMS Class Name

Initial Clean Compile (before Code Review) ICC

Post-Code Review CR

Post-Requirements-based Test RBT

Post-Structure-based Test SBT

D.3.3 Problem and Change Reporting

According to Paragraph 7.2.3 of DO-178B, there should be a mechanism within the software
development processes for problem reporting, tracking and corrective action in order to:

• record process non-compliance with software plans and standards,

• record deficiencies of the outputs of the life cycle processes,

• record anomalous behavior of the software products, and

• ensure resolutions of these problems.

An effective problem reporting and tracking system is also extremely important in terms of the
project goals, because one of the major objectives of the GCS project is to collect software error
data which can be used to help assess the reliability of the resultant software and also assess the
effectiveness of different development and verification methods for generating reliable software.
In the context of the GCS project, a problem is a question or issue raised for consideration,
discussion, or solution regarding some artifact of the software development process. In the
software development process, problems can be identified in practically all life cycle data,
including the software requirements, software design and code, and test cases.

The tables in Annex A of DO-178B specify that certain life cycle data are classified under
Control Category 1 (CC1), which means that the project must provide a formal system of

D-19

problem reporting, change control, and change review for that data. Other life cycle data are
classified under Control Category 2 (CC2), indicating that formal problem reporting and change
control procedures are not required for certification. For the purposes of developing an efficient
problem and change reporting system, the DO-178B life cycle data has been divided into three
different categories: development products (shown in Table D.3); support documentation (shown
in Table D.4); and records, results, and reports (shown in Table D.5). The life cycle data in the
development products and support documentation categories are all under CC1. A unique
problem and change reporting system has been established for each category under CC1.

D.3.3.1 Problem Reporting for Development Products

This section addresses the content and identification of problem reports for the development
products, time frame for initiating problem reports, the method of closing problem reports, and
the relationship to the change control activity in compliance with Subsection 11.4 of DO-178B.
The GCS Problem Report (PR) and Action Report (AR) forms, shown in Figures 1 and 2,
respectively, will be used to document any problems and subsequent changes to the development
products that arise during the development of the GCS implementations. The PR form is used to
capture data concerning a possible problem that is identified during the software development
process. The Problem Report contains

• information about when (in the development processes) the problem was identified,

• the configuration identification of the artifact

• a description of the problem (such as non-compliance with project standards or output
deficiency), and

• a history log for tracking the progress and resolution of the problem.

All problems are investigated to determine if indeed a fault has been detected, in which case
corrective action is taken and properly documented. Each identified fault is traced to determine
the source where the fault was introduced. The AR form is used to capture relevant information
about the action that is taken in response to a Problem Report. The Action Report will contain
the configuration identification of the artifact affected and a description of a change that is made
to an artifact in response to the Problem Report. In the case that no change is required in
response to the PR, the AR form will contain the justification for not making any changes.

D.3.3.2 Instructions for Problem and Action Reports

In general, a project participant who identifies, in the course of his prescribed activities,
something in a development product that may be regarded as a problem (such as a violation of a
software requirement or project standard) is responsible for initiating a Problem Report.
However, during those verification activities where a Moderator is present, the Moderator will
have the authority to determine whether issuing a Problem Report is appropriate. Figure D.3
shows the flow of the problem reporting process, starting with the initiation of a PR to the final
signature from the SQA representative indicating that the problem has been resolved. The
following procedure, as shown in the flow chart, should be followed. During the development
cycle,

1. The initiator of the PR form fills out the form from Section 2 through Section 8. The

Continuation form should be used if additional space is required for further explanation.

D-20

2. The PR form is given to the SQA representative who assigns a PR number to it and logs this
PR as an outstanding PR.

3. The SQA representative keeps the original PR form and gives a copy to the most appropriate
member of the development project for examination.

4. The project member receiving a copy of the PR form should examine the appropriate artifact
to determine if a change should be made. The response to the PR is made on an Action
Report. If one or more changes are necessary, the change(s) are made and Action Reports
describing the changes are written. When completing the Action Report, the respondent
should contact the SQA representative to get the appropriate AR number. The respondent
should refer to the AR number when requesting the appropriate configuration item from the
configuration manager. This number should also be placed in the artifact comments when a
change has been made. It is also important to make the change at this time.

5. The project member will return the PR form to the SQA representative with either one or
more Action Reports. The SQA representative checks that the report(s) are properly filled
out and contain an adequate description of the change or an adequate explanation for making
no change. At this time the SQA representative may deem it necessary to give a copy of the
PR form to a different member of the project. This process may repeat itself until the SQA
representative decides no further changes are necessary without further review by the PR
initiator. It is the responsibility of the SQA representative to make sure that each problem is
properly traced back to its origin. The SQA representative notes the sequence of the PR
distribution in the history section of the original PR form.

6. When all parties have responded to the PR, the SQA representative gives the original PR
form and the Action Report(s) to the initiator. If the initiator feels that the problem is
resolved, he signs off on the PR form and gives it to the SQA representative for final
approval. If the initiator does not feel the problem is resolved, the initiator can seek further
changes through the SQA representative. The SQA representative should make note of any
problems in the History Log.

7. The SQA representative then reviews the Problem and Action Reports. If further
modification is deemed necessary, the reports should be distributed for further action. Upon
final approval of the reports, the SQA representative notes the total number of changes and
the total number of no changes on the original PR form and signs and dates it signifying
resolution of the problem. The SQA representative then indicates the resolution of this PR on
the master list of PRs. The Action Report forms should be attached to the original PR form.

8. The SQA representative should notify the configuration manager that the configuration items
that were modified have been approved and should be replaced in the CMS libraries.

D.3.3.3 Number System for the Problem and Action Reports

This section discusses the identification system for the Problem and Action Reports. Each
GCS implementation will have its own set of Problem and Action Reports for the development
products. The identification numbers for the Problem and Action Reports are of the form:

a.b where
a is the chronological number of the Problem Report
b is the chronological number of the action made in response to Problem Report "a"

D-21

The Problem Reports will be numbered: 1.0

2.0
3.0
...

The subsequent responses made (via Action Reports) to a Problem Report would be
numbered:

<PR#>.1
<PR#>.2
<PR#>.3
...

For example, consider the third problem found with an implementation and suppose that 2

responses are made to the Problem Report. The Problem Report number would be 3.0 and the
Action Report numbers would be 3.1 and 3.2

See Section D.7 for instructions on how to complete the Problem Report form, the Action
Report form, the Support Documentation Change Report form, and the Continuation form.

D.3.3.4 Problem Reporting for Support Documentation

The problem and change reporting for the support documentation will be conducted through
the use of Support Documentation Change Reports. Although the Support Documentation
Change Report form shown in Figure D.4 does not capture as much detailed information as the
Problem Report, this form does capture the information necessary to comply with Paragraph 7.2.3
of DO-178B. Once a support document enters the configuration management system, all further
changes to that document will be controlled through the Support Documentation Change Reports;
that is, all changes to any support documentation must be accompanied by an approved Support
Documentation Change Report. Each configuration item that is a part of the support
documentation will have its own set of change reports. The SQA representative will keep a log of
all change reports for each configuration item.

The following procedure, as shown in the flow chart in Figure D.5, should be followed for
initiating and completing the Support Documentation Change Report for all support
documentation.

1. The author of the support documentation fills out Sections 1, 2, 4, and 5 of the Support

Documentation Change Report form. The Continuation form should be used if additional
space is required for further explanation.

2. The form is given to the SQA representative who determines if the change request is
reasonable and assigns a modification number to the report if the request is approved.

3. The SQA representative logs this as an outstanding change report for the particular
configuration item and returns the form to the author to implement the change.

4. The author requests to reserve the affected configuration item and must refer to the
modification number when making the request.

5. The author implements the requested change to the configuration item.

6. When the modification is completed, the author completes Section 6 of the form, places the
configuration item in the appropriate place for the configuration manager to retrieve, and
returns the form to the SQA representative for review.

D-22

7. The SQA then reviews the change for consistency and compliance with project plans and
standards. If the change is not acceptable, the SQA representative can work with the author
to implement the necessary modifications. The project leader will arbitrate if the author and
SQA representative cannot reach consensus.

8. When the change has been completed and approved by the SQA representative, the SQA
representative should notify the configuration manager that the configuration item that was
modified has been approved and should be replaced in the appropriate CMS library.

D.3.4 Change Control

According to the DO-178B guidelines, change control is "the systematic evaluation,
coordination, approval or disapproval, and implementation of approved changes in the
configuration of a configuration item after formal establishment of its configuration identification
or to baselines after their establishment" (ref. D.2). The objective of the change control activity is
to provide for recording, evaluation, resolution and approval of changes throughout the software
life cycle. Change control will preserve the integrity of the configuration items and baselines by
providing protection against change. Change control ensures that any change to a configuration
item requires a change to its configuration identification. Changes to baselines and configuration
items under change control should be recorded, approved and tracked.

D-23

AR#

Reg
res

sio
n

Othe
r

10. Total # of Changes:

13. SQA Signature & Date12. Initiator Signature & Date

8. Test Case Identification:

7. Artifact Identification:
Design Description
Source Code Other

6. Description of Problem:

4. Initiator & Role:
page 1 of ____GCS Problem Report

1. PR #: 2. Planet: 3. Discovery Date:

5. Activity at Discovery:

Rea
din

g
Sp

ec
ifi

ca
tio

n

Rea
din

g C
od

e

Design
Code
Unit Testing

Subframe Testing
Frame Testing

Functional
Structural

Test
 R

ea
din

ess

Rev
iew

Top-Level Simulator
Integration Testing

Development
Phases

Activity

Test
 C

om
ple

tio
n

Rev
iew

Desi
gn

 R
ev

iew
Cod

e R
ev

iew

Test
 C

ase

Crea
tio

n
Test

 C
ase

Exe
cu

tio
n

9. History Log:

Date To Date From Person Comments

11. Total # of No Changes:

Executable Object Code

Support Documentation

Figure D.1. GCS Problem Report Form

D-24

5. Artifact Identification:

6. Description of Action:

4. Respondent & Role:
page 1 of ____GCS Action Report

1. AR #: 2. Planet: 3. Date of Action:

7. Was this action related to another action(s)? Yes AR#(s)

No

I don't know

Support DocumentationDesign Description

Executable Object Code
OtherSource Code

Figure D.2. GCS Action Report Form

D-25

NO

NO

YES

YES

NO

YES

NO YES

1. Initiator starts Problem Report

3. SQA logs PR & gives it to a
 project member for examination

4. Project member examines PR & artifact

Is
change

necessary
?

Project member fills
out Action Report

Project member requests configuration
item from CM, makes change(s)
& completes Action Report(s)

5. Reports given back to SQA

Is
problem
resolved

?

Initiator signs PR

7. PR+AR(s) given to SQA for review

Initiator Reviews Reports

2. Initiator gives PR to SQA

Reports go back
to SQA

6. SQA gives PR+AR(s) to Initiator

SQA gives PR to
other project member

Further
analysis
needed

?

SQA disperses PR
for further examination

Arbitration Committee (project leader,
SQA, system analyst) resolve

problem

8. SQA signs PR indicating approval and contacts
configuration manager to replace configuration item

Need for
others to
see PR

?

NO
Is

problem
resolved

?
YES

Figure D.3. Flow of Problem Reporting Process for the Development Products

D-26

Support Documentation Change Report page 1 of ____

1. Configuration Item: 2. Date: 3. Modification #:

4. Part of Configuration Item Affected:

5. Reason for Modification:

6. Modification

7. SQA Signature & Date:

Figure D.4. Support Documentation Change Report Form

D-27

NO

YES

1. Author starts SDCR --
 giving a reason for change

2. Author gives SDCR to SQA
 for approval to make change

3. SQA logs SDCR & gives
it to author to implement change

4. Author requests to reserve specific configuration
 item from CM (giving report #)

6. Author gives SDCR back to
 SQA for review

7. SQA reviews SDCR

8. SQA approves SDCR and contacts
 Configuration Manager to replace
 configuration item

Reports go back to author
for further modification

If approved

5. Author implements change
 and completes SDCR

Is
Change

Acceptable
?

Author makes
appropriate modifications

Figure D.5. Flow of Change Reporting Process for the Support Documentation

D-28

The support equipment and software used in this project are discussed in the Software Life
Cycle Environment Configuration Index. Changes to these tools, in the form of version updates,
must be approved by the project leader. Procedures for ensuring that a tool change does not
adversely affect the development process, testing process, or any existing design, code, or other
document vary with the tool and are developed as needed. Approval of the procedure by the
project leader is required prior to implementing the procedure.

The procedure for controlling the effects of changing a tool vary with the importance of a tool
as it relates to the actual design or code. A FORTRAN compiler change requires full regression
testing of the code to look for changes in output. This involves re-running all of the
requirements-based and structural test cases. Once the tests have been re-run, the output must be
approved by the SQA representative. A change to the CMS tool would require an intensive
review of the documented changes and several trials to ensure that the changes indeed work
properly and that the libraries are not corrupted with the use of the new tool. There are no plans
to upgrade the CMS tool or the Teamwork tool during the project life cycle.

Change control of the development products and support documentation will follow the
guidelines of problem and change reporting. Some changes recorded on PRs and SDCRs may
effect other software life cycle data. If it does, the life cycle data will be changed according to
the problem and change reporting process and will go through the SQA representative for
approval as necessary. All changes will be in accordance with DO-178B. For example, if a
programmer needs to reserve his source code, he should provide the configuration manager with
the element name and the PR#. The PR# is needed so that this information may be recorded in
the CMS library history log. If a support document needs to be modified, a formal modification
number and the configuration item name should be provided to the configuration manager to
reserve the item. Before the item can be replaced in the CMS library, the SQA representative
must sign the SDCR form and contact the configuration manager to replace the item. To
maintain the integrity of the CMS libraries, only the configuration manager and the project leader
will have access to them.

The GCS simulator's change control procedures are handled differently than the off-the-shelf
tools. The same version of the GCS simulator will be used throughout the development of the
implementations. Because this tool directly affects the output from the testing, any change to the
simulator would require regression testing and approval by the project leader.

D.3.5 Change Review

The objective of the change review activity is to ensure problems and changes are assessed,
approved or disapproved, approved changes are implemented, and feedback is provided to
affected processes through problem reporting and change control methods defined during the
software planning process.

The change review process for development products and support documentation is directly
related to the problem and change reporting process. Once these items have been placed under
configuration control, the problem reporting procedures will be the only mechanism for initiating
changes to these items. For development products, there will be a Problem Report associated
with all changes. Each PR will be reviewed by the SQA representative to ensure that the change
is necessary. If the change has been approved and implemented, the SQA representative consults
with the initiator of the PR to assure the problem has been resolved. If no change has been made
to a GCS artifact, an Action Report is filled out to explain the reason for no change. Once a PR
has been initiated and approved, the project member responsible for the change needs to contact
the configuration manager to reserve the artifact affected. The requester needs to supply the
configuration manager with the element name(s) and the PR#; this will assure that the

D-29

configuration item(s) being requested has been configuration identified (reference the flow chart
for the Problem Reporting process, Figure D.3). If a programmer or verification analyst is
requesting a GCS artifact, he must use VAXnotes to communicate with the configuration
manager (see the Software Development Standards for communication protocol). If support
documentation requires a change, a Support Documentation Change Report (SDCR) form must
be filled out. The SQA representative will assign a formal modification number to the SDCR
form and then the document may be requested from the configuration manager; the requester
should provide the configuration item name and formal modification number to reserve the item.
The SQA representative must sign the SDCR form and contact the configuration manager before
the configuration item may be replaced in the CMS library.

The system safety assessment process is beyond the scope of the GCS project and will
therefore not be addressed.

D.3.6 Configuration Status Accounting

The objective of the status accounting activity is to provide data for the configuration
management of software life cycle processes with respect to configuration identification,
baselines, problem reports, and change control.

The configuration manager will keep binders for each implementations’ PRs signed off by the
SQA representative; any Action Reports associated with a PR will be attached to that PR. These
binders will be labeled "Problem Reports for Planet" and will be located in the Configuration
Manager's office in Building 1220 of NASA Langley. A binder labeled "Change Reports" will
also be kept by the configuration manager. This binder will contain all Support Documentation
Change Reports signed off by the SQA representative.

A binder with the status of each CMS library will also be kept. The log kept in this binder will
contain the CMS library name, the date an item is acted on, the action performed on the item, the
name(s) of the artifact(s) requested, the requester's user name, and a remark as to why the
element(s) is being reserved. The log sheets in the binders have the following format where XXX
is the specific library name:

LIBRARY: DISK$HOKIE:[GCS.CMS.XXX]

Date Action Element Requester

(initials)
Remarks

.

.

.

In case of an unusual occurrence, a "*" will be entered in the log with an explanation of the

occurrence. The binder will contain dividers to separate configuration items. The dividers will
be labeled with only the last directory name of the CMS library, except in the cases where the
library is planet specific. For example, for the library DISK$HOKIE:[GCS.CMS.SPEC], the
divider will be labeled "spec". For the Pluto Source Code library,
DISK$HOKIE:[GCS.CMS.SOURCE_CODE.PLUTO], the divider will be labeled

D-30

"source_code.pluto". This binder will be labeled "CM Status Log" and will be kept in the
Configuration Manager's office in Building 1220 of NASA Langley.

D.3.7 Archive, Retrieval and Release

The objective of the archive and retrieval activity is to ensure that the software life cycle data
associated with the GCS project can be retrieved in case of a need to duplicate, regenerate, retest,
or modify the software product. The objective of the release activity is to ensure that only
authorized software is used, in addition to being archived and retrievable.

All of the software life cycle data associated with the GCS project are retrievable by
contacting the project leader. The project leader will then contact the configuration manager and
request a copy of all life cycle data needed for delivery to the requester.

The items under CMS configuration management for the GCS project are kept on-line on a
DEC VAX cluster, running the VMS operating system. The following describes the backups of
this system to ensure the integrity of the data:

• a full backup of all items located on the system will be performed once a week;

• a duplicate copy will be made of each full backup tape and stored in a physically separate
archive to minimize the risk of loss in the event of a disaster;

• no unauthorized changes can be made to any of the backup tapes;

• all tapes will be verified for regeneration errors (by using the backup/verify command);

• incremental backups are run on a daily basis for a four week cycle to lessen the probability of
losing any information.

After a full backup has been performed, a duplicate copy of the tape will be made. The
duplicate tapes are verified when copied to ensure that accurate copies have been produced. The
components of the GCS project will be authorized for release to the certification authority after
the integration testing has been completed. All data will be archived for future references.

Since Problem Reports are not kept electronically, they will be archived in a binder by the
configuration manager. Only PRs that have been approved and signed by the SQA representative
will be archived. There will be a separate binder labeled "Problem Reports for Planet" for each
implementation. See the section on "Configuration Status Accounting" for more details on the
PR binders.

D.3.8 Software Load Control

The objective of the software load control activity is to ensure that the Executable Object Code
is loaded into the airborne system or equipment with appropriate safeguards. This activity is non-
applicable to the Guidance and Control Software Project since the implementations will not be
included in a "real" hardware system intended for space flight. Instead, the software will run with
the GCS simulator which is located on the microVAX 3800 computer system with the rest of the
software product.

D.4 Transition Criteria

This section defines the transition criteria by specifying which items will have configuration
identification and when they enter the configuration management process. The software life
cycle data that requires approval by the project leader will enter the configuration management

D-31

process after approval has been received. The following processes are performed concurrently
with the software development process throughout the software life cycle:

• the software verification process,

• the software configuration management process, and

• the software quality assurance process.

Each software life cycle process performs activities on inputs to produce outputs. A process
may produce feedback to other processes and receive feedback from others. Feedback includes
how information is recognized, controlled, and resolved by the receiving process. For example, a
verification activity (such as executing a test case) may identify that a problem exists and then the
problem reporting procedures bring it to the attention of other processes. Many different
processes may be effected by the resolution of the problem and will therefore need to be modified
and re-approved.

The support documents enter CMS when the initial draft of the document has been approved
by the project leader, with the exception of the GCS specification. The GCS specification enters
the configuration management process at Version 2.1 received from RTI after being converted to
a Microsoft Word document. The design descriptions enter the configuration management
process at the Post-Code Review version received from RTI. Each programmer is responsible for
modifying the original design of his implementation (developed at RTI) so that the new design
meets the requirements of Version 2.2 of the GCS specification and the development standards.
After the design phase has been completed, the source code and executable object code are
generated and then enter the configuration management process after the source code cleanly
compiles and is ready for initial code review. Table D.11 shows the transition criterion for
entering the configuration management process for the project data.

Table D.11. Transition Criterion for Project Data

Configuration Item

Transition Criterion

support documentation initial draft approved by SQA

GCS Specification GCS Specification version 2.1 received from RTI

Design Description Post-Code Review version received from RTI

Source Code Design Phase Completion

Executable Object Code Design Phase Completion

Verification Results after first verification activity (Design Review)

Problem and Action Reports after first verification activity (Design Review)

Configuration Management Records initial CMS activities

Software Quality Assurance Records after first verification activity (Design Review)

D-32

D.5 SCM Data

The SCM data is the life cycle data produced by the configuration management process. This
data includes SCM Records, the Software Configuration Index, and the Software Life Cycle
Environment Configuration Index.

The results of the SCM process activities are recorded in SCM Records. Table D.1 showed
the configuration identification list for all of the life cycle data that will be maintained in the
CMS libraries. The remaining life cycle data will be kept either in paper or electronic form.
Baselines for the source code will be established after each review or test phase and baselines for
documentation will be established as needed. CMS keeps a history file that logs all changes
made to the libraries for the life cycle data; this information will also be kept in the CM Status
Log binder.

The Software Configuration Index identifies:

• the configuration of the GCS project,

• the executable object code and instructions for building it,

• each source code component,

• software life cycle data,

• archive and release media, and

• procedures used to recover the software for regeneration, testing, or modification.

The Software Life Cycle Environment Configuration Index identifies the development
environment:

• the software life cycle operating system,

• the software development tools,

• the test environment used to verify the GCS project, and

• qualified tools and their associated qualifications.

D.6 Supplier Control

The supplier control is the means of applying the software configuration management process
requirements to the sub-tier suppliers. This is non-applicable for the Guidance and Control
Software Project.

D.7 Completing the Problem Report Form

In this section, instructions for completing the fields of the PR form are stated. Specific
instructions or further explanation for each section of the PR form are given below.

page 1 of __: Fill in the total number of pages on each form to help avoid the loss of attached

pages. As many Continuation forms as necessary may be used.

1. PR#: to be assigned by the SQA representative

2. Planet: the name of the planet in whose development process this problem was identified

D-33

3. Discovery Date: date when this problem was identified. It is important to issue a PR form at
the time a problem is identified.

4. Initiator & Role: name of the person who has identified the problem and the role
(programmer, verification analyst, SQA representative, or system analyst) that person is
fulfilling at the time of problem identification.

5. Activity at Discovery: The development cycle for each GCS implementation can be
decomposed into 6 distinct phases. In this section, indicate the phase by placing an X in the
appropriate box that corresponds to the development phase in which this problem was
identified and the specific activity that was being performed at that time. If the Other
category is appropriate, please put an explanation in Section b of the Continuation form.

6. Description of Problem: Provide an adequate description of the issue in question.

7. Artifact Identification: Check the box that corresponds to the artifact under consideration
when the problem was identified. The label for the configuration item should be given along
with the information in Table D.12 for each artifact. If a PR is being generated because the
actual results from the execution of a test case did not agree with the expected results, the
initial artifact under consideration would be the executable object code. The test case that
surfaced the anomalous behavior would be identified in Section 8. If more space is needed,
use Section b of the Continuation form.

8. Test Case Identification: If the failure of a test case is the reason for initiating this PR, fill
in the appropriate test case number, including its configuration item label, element name(s),
and generation #; otherwise, indicate Not Applicable (N/A).

9. History Log: to be filled in by the SQA representative. The SQA representative should log
the sequence of dispersals of the PR, logging all ARs related to the PR and noting date of
issuance, date of return, and the person receiving the PR form. The SQA representative
should also note any anomalies in the resolution of the problem, such as disagreements in
resolution between the initiator and the person making the change.

10. Total # of Changes: to be filled in by the SQA representative when all Action Reports are
closed and the problem has been resolved. A total of 0 indicates that no change was made.

Table D.12. Information for Artifact Identification

Artifact Information
Design Description diagram, P-Spec #, C-Spec #, or M-Spec #
Source Code element name & generation #
Executable Object Code element name & generation #
Support Documentation specific chapter, section, and table or figure reference, as appropriate
Other be as specific as possible

11. Total # of No Changes: to be filled in by the SQA representative when all Action Reports

are closed and the problem has been resolved.

12. Initiator Signature & Date: The person who initiates the PR should sign and date the
original PR form here when the problem has been resolved.

D-34

13. SQA Signature & Date: After checking that the problem is satisfactorily resolved and all
necessary changes have been properly made, the SQA representative should sign and date the
original PR form indicating closure of this PR.

D.8 Completing the Action Report Form

In this section, instructions for completing the fields of the AR form are stated. Specific
instructions or further explanation for each section of the AR form are given below.

page 1 of __: Fill in the total number of pages on each form to help avoid the loss of any
attached pages. As many Continuation forms as necessary may be used.

1. AR#: to be assigned by the SQA representative. The respondent should contact the SQA
representative to get the appropriate AR number. When a change is indicated, the AR# can
be incorporated in the comments which describe this change in the code or design.

2. Planet: the name of the planet associated with the person making this action.

3. Date of Action: date when this action was taken. In case of changes, it is important to
complete the AR form at the time a change is being made.

4. Respondent & Role: name of the person who is making the response and his role
(programmer, verification analyst, SQA representative, or system analyst).

5. Artifact Identification: Check the box that corresponds to the artifact in question. The
information in Table D.6 should be specified for each artifact. In case of responses made to
the support documentation, the label for the configuration item should be cited. If more space
is needed, use Section b of the Continuation form.

6. Description of Action: provide a general description of the change that was made or an
explanation of why no change is necessary. In case of responses made to the support
documentation, the appropriate modification number from the Support Documentation Report
Form should be cited.

7. Was this action related to another action(s)?: Check the appropriate box to indicate
whether this action is related to another action. If yes, indicate the relevant AR#(s).

D.9 Completing the Support Documentation Change Report Form

In this section, instructions for completing the fields of the Support Documentation Change
Report form are stated. Specific instructions or further explanation for each section of the
Support Documentation Change Report form are given below.

page 1 of __: Fill in the total number of pages on each form to help avoid the loss of any

attached pages. As many Continuation forms as necessary may be used.

1. Configuration Item: the label for the configuration item that needs to be changed.

2. Date: date that this change report is being initiated.

D-35

3. Modification #: to be provided by the SQA representative. The author should give the form
to the SQA representative to get the number and corresponding authorization to implement
the change.

4. Part of the Configuration Item Affected: describe the location of the proposed change.
Chapter and section references should be included as appropriate.

5. Reason for Modification: explanation detailing why the configuration item should be
changed.

6. Modification: description of the change including the following information as appropriate:
original text (that is to be changed), action (such as deletion, addition, or modification), and
modified text (the correct text to be inserted). If substantial changes are made, the affected
pages should be attached to the form.

7. SQA Signature and Date: After checking that the change is acceptable and has been
properly made, the SQA representative should sign and date the form indicating approval of
this change.

D.10 Completing the Continuation Form

The Continuation Form provides extra space in addition to the PR, AR, and Support
Documentation Change Report forms. Figure D.6 shows the Continuation Form. Specific
instructions or further explanation for each section of the Continuation form are provided below.

______________ Report Continuation: Fill in the blank with the name of the form that is being

continued.

page__ of __: Fill in the page number and total number of pages on each form to help avoid the
loss of any attached pages. As many Continuation forms as necessary may be used.

a. Report #: the number of the report that is being continued

b. Notes/Explanation: This section is to be used to continue comments or descriptions from
any section of a report.

D-36

page ___ of ____ ______________ Report Continuation
a. Report #:

b. Notes/Explanation (Please reference appropriate section number)

Figure D.6. Report Continuation Form

D.11 References

D.1. Finelli, George B.: Results of software error-data experiments. In AIAA/AHS/ASEE
Aircraft Design Systems and Operations Conference, Atlanta, GA, September 1988.

D.2. RTCA Special Committee 167. Software Considerations in Airborne Systems and
Equipment Certification. Technical Report RTCA/DO-178B, Requirements and
Technical Concepts for Aviation, December 1992.

D-37

D.3. Uczekaj, John and Hughes, Banni: Tailoring Configuration Management Tools for
Development of Avionics Software.

D.4. Guide to VAX DEC/Code Management System. Digital Equipment Corporation,
Maynard, Massachusetts, April 1987.

D.5. Teamwork Environment Reference Manual. Cadre Technologies, Inc., Providence,
Rhode Island, Release 4.0, 1991.

D.6. Teamwork/SA Teamwork/RT User's Guide. Cadre Technologies, Inc., Providence,
Rhode Island, Release 4.0, 1991.

D.7. Teamwork/SD User's Guide. Cadre Technologies, Inc., Providence, Rhode Island,
Release 4.0, 1991.

E-1

Appendix E: Software Quality Assurance Plan for the Guidance and
Control Software Project

Author, Kelly J. Hayhurst, NASA Langley Research Center

This document was produced as part of Guidance and Control Software (GCS) Project conducted at
NASA Langley Research Center. Although some of the requirements for the Guidance and Control
Software application were derived from the NASA Viking Mission to Mars, this document does not
contain data from an actual NASA mission.

E-2

E. Contents

E.1 INTRODUCTION ...E-3

E.2 SOFTWARE QUALITY ASSURANCE ENVIRONMENT ..E-3

E.2.1 ORGANIZATION RESPONSIBILITIES ...E-4
E.2.2 SCOPE AND ORGANIZATION OF THE SQA PLAN ..E-5

E.3 SOFTWARE QUALITY ASSURANCE AUTHORITY ..E-5

E.4 SOFTWARE QUALITY ASSURANCE ACTIVITIES ...E-5

E.4.1 REQUIREMENTS PROCESS ..E-5
E.4.1.1 Verification ...E-6
E.4.1.2 Quality Assurance...E-6
E.4.1.3 Transition Criteria..E-6

E.4.2 DESIGN PROCESS...E-6
E.4.2.1 Verification ...E-7
E.4.2.2 Quality Assurance...E-7
E.4.2.3 Transition Criteria...E-7

E.4.3 CODE PROCESS..E-7
E.4.3.1 Verification ...E-7
E.4.3.2 Quality Assurance...E-8
E.4.3.3 Transition Criteria..E-8

E.4.4 INTEGRATION PROCESS ...E-8
E.4.4.1 Requirements-Based Testing ..E-8
E.4.4.2 Structure-Based Testing ...E-9
E.4.4.3 Quality Assurance...E-9
E.4.4.4 Transition Criteria..E-10

E.. PROBLEM REPORTING AND CORRECTION ...E-10

E.6 CONFIGURATION MANAGEMENT..E-15

E.7 SQA RECORDS...E-16

E.8 SOFTWARE CONFORMITY REVIEW..E-17

E.9 SUPPLIER CONTROLS ..E-17

E.10 REFERENCES...E-17

E-3

E.1 Introduction

As described in the Requirements and Technical Concepts for Aviation RTCA/DO-178B
guidelines, "Software Considerations in Airborne Systems and Equipment Certification," (ref.
E.1) the Software Quality Assurance (SQA) process provides evidence that the software life
cycle processes satisfy their objectives and that the resultant software conforms to its
requirements. The primary means that SQA provides this evidence is by assuring that the
software life cycle processes are performed in compliance with the approved software plans and
standards. For the Guidance and Control Software (GCS) project, three objectives of SQA
process (as given in Table A-9 of Annex A in DO-178B) are to be obtained:

• that software development processes and integral processes comply with approved
software plans and standards,

• that the transition criteria for the software life cycle processes are satisfied, and

• that a conformity review of the software product is conducted.

In conducting the SQA process, two other objectives are to be obtained. First, deficiencies in
the development and integral processes and project artifacts are to be detected, evaluated, tracked
and resolved. Second, assurance is to be provided that the software products and software life
cycle data conform to certification requirements. This plan defines the means by which these
software quality assurance process objectives will be satisfied. In compliance with section 11.5
of DO-178B, this document contains the following:

• a description of the SQA environment,

• a statement of the SQA authority, responsibility, and independence,

• a description of the SQA activities,

• the transition criteria for entering the SQA process,

• the timing of the SQA activities, and

• a definition of the SQA records to be produced.

E.2 Software Quality Assurance Environment

The GCS project has been undertaken as part of a series of studies conducted by NASA
Langley Research Center to characterize the software failure process and provide data on which
to base the development of methods for assessing software reliability (ref. E.2). For this project,
two implementations of GCS are to be developed based on a common specification of the
software requirements and in compliance with the DO-178B guidelines. Additional details about
the rationale underlying the study can be found in the Plan for Software Aspects of Certification .

The SQA process for the GCS project is administered by one person, hereafter called the SQA
representative. Because the scale of the software product is small (the source code is expected to
be approximately 2000 non-commented source lines), one individual should be able to conduct all
necessary SQA activities. The Software Quality Assurance Plan outlines all procedures, controls,
and audits to be carried out by the SQA organization to ensure adherence to documented
procedures and standards. This plan was written according to the guidelines contained in DO-
178B, with the assumption that GCS represents Level A software because all GCS functions are
classified in the DO-178B catastrophic category. All quality assurance activities and reports
described in this plan are intended to support this level of software certification.

E-4

E.2.1 Organization Responsibilities

For a host of reasons, the SQA representative should be at a level in the hierarchy of the
organization equal to or above the project leader. However, due to constraints on project
resources, the project leader will also have to perform the function of the SQA representative.
Due to the project objective of collecting data from a life cycle process that complies with DO-
178B, the project leader/SQA representative will be compelled to faithfully conduct the SQA
activities and will not have conflicting priorities such as real industrial schedules and deadlines to
meet. The organizational environment for GCS is shown in Figure E.1.

Branch
Supervisor

Project
Leader

SQA
Representative

Configuration
Manager

System
Analyst

Verification
Analysts Programmers

Figure E.1. GCS Project Organizational Chart

One programmer and one tester are assigned as a team to independently develop and verify

each GCS implementation. All GCS implementations will independently undergo the same
software development processes, as well as the software verification process. Due to the
experimental nature of this project and resource constraints, the software integral processes of
Software Configuration Management and SQA will be administered independently across the
implementations, but the systems and individuals used to carry out these processes will be the
same. For example, one configuration management system will store all data items for all
implementations, one person will do configuration management for all implementations, and one
person will do SQA for all implementations. Further, there will not be a certification liaison
process for the GCS project.

Because the entire project only consists of seven people who are physically located at Langley
Research Center, most of the communication, in addition to the project documentation, among
project members will be through project meetings. Electronic mail will be used for informal
communication. The Software Development Standards provides a more detailed discussion of
communication protocol for project participants.

E-5

E.2.2 Scope and Organization of the SQA Plan

This plan is largely organized by life-cycle phase. For the GCS project, there are four
development processes that follow a modified waterfall life cycle model: software requirements,
design, code, and integration. The Plan for Software Aspects of Certification provides more
detail on the software development plan. The development of the software requirements,
however, is beyond the scope of this plan with respect to compliance with DO-178B. For each of
the other processes, this plan lists the life cycle data that is produced, the associated verification
activities, all applicable and documented standards and procedures (including procedures
governing conduct of verification activities), and the SQA representative’s role in ensuring
adherence to those standards and procedures.

For this project, the integration phase includes two types of testing: requirements-based
testing (at the functional unit, subframe, frame, and trajectory levels) and structure-based testing.
Conduct of these tests is governed by the Software Verification Plan. For each phase in
integration process, this plan gives a brief description of the testing to be conducted and of the
applicable policies contained in the Software Verification Plan. There is also a description of the
test readiness and test completion reviews to be conducted by the SQA representative.

The SQA representative is responsible for ensuring that all problems identified during the
various verification activities are documented and corrected and that all change control
procedures are followed. This plan contains a section on problem reporting and correction as
well as a section on software configuration management.

Finally, the SQA representative is responsible for reviewing all deliverable life cycle data for
adherence to DO-178B guidelines. The final section of this plan summarizes the set of reports
and approvals to be provided by the SQA representative.

E.3 Software Quality Assurance Authority

The SQA representative for the GCS project has the full set of authorities to grant or deny the
necessary approvals for all life cycle data. The SQA representative will ensure that the project
objective of developing software that is compliant with DO-178B is accomplished.

E.4 Software Quality Assurance Activities

The following sections describe the SQA activities to be performed for each software life
cycle including: a brief description of the life cycle process and data, corresponding verification
activities, timing and transition criteria, and SQA actions.

E.4.1 Requirements Process

As described in the Plan for Software Aspects of Certification, there is no real guidance and
control system to be developed nor documentation of real system requirements. The GCS project
is solely a research effort to investigate the faults that occur in the development and operation of
software. The GCS implementations will only be executed in a simulated operational
environment to collect software failure data. Consequently, the GCS project started with the
definition of software requirements for a specific component of a guidance and control system,
namely the terminal descent phase.

The requirements process for the GCS project basically consists of revising the software
requirements previously developed by the Research Triangle Institute (RTI), see the Plan for

E-6

Software Aspects of Certification for further details. The software requirements are contained in
a document entitled Guidance and Control Software Development Specification, which is referred
to as the GCS specification and serves as the Software Requirements Data for this project. The
GCS specification will be placed under configuration control (as described in the Software
Configuration Management section of this document) with the release of version 2.2. Version 2.2
represents the completion of the modifications made to the GCS specification that was delivered
by RTI. Requirement standards to be applied to the modification of the GCS specification are
discussed in the Software Development Standards.

E.4.1.1 Verification

The software requirements developed at RTI were subjected to a verification process which
was outside of the scope of the formal verification procedures carried out by the verification
analysts currently assigned to the project. The correctness and completeness of the requirements
were verified in two ways: by conducting walk-throughs and peer reviews at RTI and by coding
two prototype programs from the requirements. The results of the original requirements review
are summarized in the GCS Development Specification Review Description (ref. E.3). The
project development activities that are intended to comply with the DO-178B guidelines start
with the release of version 2.2 of the GCS specification. Prior to the release of version 2.2 of the
GCS specification, the current system analyst, project leader, and an in-house consultant will
review the requirements; however, no formal review or analysis is planned.

E.4.1.2 Quality Assurance

The initial development and verification of the GCS specification was beyond the scope of the
SQA process for this project. Only modifications to the GCS specification after release 2.2,
driven by problem reports, are subject to review by the SQA representative. All questions raised
by any member of the development team regarding the GCS specification are brought to the
system analyst. The system analyst reviews all questions and determines if changes to the GCS
specification are required. When changes are deemed necessary, the system analyst submits a
Support Documentation Change Report (SDCR) describing the modification to the SQA
representative for review and approval. For more details on the change control process see the
Software Configuration Management Plan.

E.4.1.3 Transition Criteria

Once the project leader has approved version 2.2 of the GCS specification, the GCS
specification will be released to the project programmers to begin the design process. No formal
SQA record will be issued because this activity is not intended to be within the scope of
compliance with DO-178B.

E.4.2 Design Process

The purpose of the design process is to produce a description of the low-level requirements
and software architecture from the high-level requirements given in the GCS specification. Each
of the independently produced GCS designs will be contained in an implementation specific
Design Description document. For example, the design for the Mercury implementation should
be entitled Design Description for Mercury. These documents will be placed under configuration
control prior to the design review. Design standards and guidelines are contained in the
document entitled Software Development Standards.

E-7

E.4.2.1 Verification

For each GCS design, a design review will be conducted to verify that the high-level
requirements have been correctly translated into the low-level requirements and software
architecture and that the design standards have been followed. The procedures to be followed
during the review are outlined in the Software Verification Plan. That document also contains the
Requirements Traceability Matrix, that is used to verify that all requirements are addressed by the
design; the Design Review Checklist, that is used to verify that the design adheres to all
applicable standards; and the inspection log, that is used to record any suspected problems.

The design review is divided into an overview meeting and one or more inspection meetings.
The overview meeting is used to distribute the design and the procedures and tools for reviewing
it and answer any procedural questions. The inspection meetings examine all parts of the design
description to determine if there are any problems.

E.4.2.2 Quality Assurance

The SQA representative will serve as the moderator of the design review meetings and will be
responsible for ensuring that the Requirements Traceability Matrix is completed during the design
process. The SQA representative will also make sure that problem reports are filled out for all
cases of missing, excess, or incorrect functionality or for nonconformance to standards. The SQA
representative will track all problem reports through to completion.

E.4.2.3 Transition Criteria

Approval from the SQA representative is required before a programmer is permitted to
proceed from the design phase to the coding phase. Before this approval is granted, all problems
identified during the design review must be corrected. The design changes (or any changes to the
GCS specification) made in the course of these corrections must be documented on action reports
and approved by the SQA representative.

The SQA representative generates a Design Review Report, which contains a summary of
SQA activity and the list of problem and action reports.

E.4.3 Code Process

The purpose of the code process is to implement the low-level requirements and software
architecture given in the design description into source code. The GCS Fortran source code and
the commands used to compile and link it will be contained in implementation specific
documents. For example, the code for the Mercury implementation should be entitled Source
Code for Mercury. These documents will be placed under configuration control prior to the code
review. The compiler and linker commands will be such as to produce a listing and map with the
information specified in the Software Verification Plan. The listing and map will be used as tools
during the code review. Coding standards and guidelines are contained in the document entitled
Software Development Standards.

E.4.3.1 Verification

The purpose of code reviews is to verify that the source code has properly implemented the
low-level requirements and software architecture as specified in the design description and that it
meets coding standards. Code reviews are scheduled after all modules (a module consists of a
single function or subroutine) have been written and compiled without errors (but not executed).

E-8

The procedures to be followed during the review are outlined in the Software Verification Plan.
That document also contains the Requirements Traceability Matrix, that is used to verify that all
requirements are implemented in the source code; the Code Review Checklist, that is used to
verify that the code adheres to all applicable standards; and the inspection log, that is used to
record any suspected problems.

The code review is divided into an overview meeting and one or more inspection meetings.
The overview meeting is used to distribute the code and the procedures and tools for reviewing it
and answer any procedural questions. The inspection meetings examine all parts of the source
code to determine if there are any problems. A problem report is filled out for all cases of
missing, excess, or incorrect functionality or for nonconformance to standards. If it is determined
that a problem originates in the design, the programmer is responsible for filling out an action
report prior to making the design correction and generating a second action report for the code.
All completed problem reports must be approved by the SQA representative.

E.4.3.2 Quality Assurance

The SQA representative will serve as the moderator of all code review meetings and will be
responsible for ensuring that the Requirements Traceability Matrix is completed during the code
process. The SQA representative will track any problem reports generated.

E.4.3.3 Transition Criteria

Due to the experimental aspects of this project, the programmers are not allowed to execute or
test their own code. All problems identified during the Code Review must be corrected and all
problem reports completed before the source code is approved for testing in the integration
process. The designated verification analyst will conduct all testing of his assigned GCS
implementation.

The SQA representative generates a Code Review Report, which contains a summary of SQA
activity and the list of problem reports.

E.4.4 Integration Process

Due to the nature of this project, there is no special hardware or additional software needed for
integration. The integration process for the GCS project consists of two major types of testing:
requirements-based testing (at the functional unit, subframe, frame, and trajectory levels), and
structure-based testing. For all phases of the integration process, each verification analyst will be
required to execute the appropriate test cases and maintain a test log. A problem report must be
filled out whenever the expected results do not match the actual results. The Requirements
Traceability Matrix will be used to cross reference the requirements-based test cases to the
software requirements.

The programmer is responsible for making code changes to correct all problems identified in
problem reports. If it is determined that a problem originates in the design, the programmer must
fill out an action report prior to making the design correction and generate a second action report
for the corresponding code changes. This second report must be completed by the programmer
after the code corrections have been made. All completed problem reports must be approved by
the SQA representative.

E.4.4.1 Requirements-Based Testing

E-9

For this project, requirements-based testing is equivalent to requirements-based low-level
testing as described in DO-178B. Every requirement will be covered by at least one
requirements-based test case and these will be listed in the Requirements Traceability Matrix.
The two verification analysts will design the requirements-based test cases together primarily
using equivalence class partitioning and boundary value analysis techniques. The actual testing
of each implementation will be carried out independently by the tester assigned to that
implementation. The requirements-based testing will start at the functional unit level and proceed
through subframe, frame and trajectory levels.

E.4.4.2 Structure-Based Testing

Upon the completion of requirements-based testing and the correction of all outstanding
problem reports, each verification analyst will structurally analyze his source code using the
Analysis of Complexity (ACT) tool (ref. E.4) to determine path structure and corresponding
decision points in the code. Multiple Condition/Decision Coverage (MC/DC) tables (ref. E.5)
will be constructed for all decision points. The requirements-based test cases will be reviewed to
determine if any additional test cases are needed to reach 100% MC/DC for each GCS
implementation. Any necessary structure-based test cases for each of the GCS implementations
will be designed and carried out by the verification analyst assigned to that implementation. The
Software Verification Plan contains a more detailed description of the structure-based testing.

E.4.4.3 Quality Assurance

Prior to the start of requirements-based testing, the SQA representative is responsible for
conducting a test readiness review, where the SQA representative will verify that:

• all test cases are documented, including all inputs and expected results, and placed under
configuration control.

• the set of requirements-based test cases meet the coverage criteria outlined in the
Software Verification Plan. The SQA representative will ensure that the Requirements
Traceability Matrix with the identification number of the test case(s) associated with each
requirement is completed.

At the conclusion of requirements-based testing, the SQA representative will conduct an

informal review of the requirements-based testing results to ensure that all requirements-based
test cases ran successfully (that is, all output and expected results matched). When all problem
reports issued during requirements-based testing are completed, the verification analyst can
proceed with the structure-based testing. Prior to executing any structure-based test cases, each
verification analyst must present the MD/DC decision tables, structure graphs of the source case,
and test case identification to the SQA representative for review. Once the structure-based test
cases are approved and placed under configuration control, the verification analyst can execute
the test cases.

At the conclusion of structure-based testing, the SQA representative is responsible for holding
a test completion review according to the following procedures:

• The SQA representative will check to ensure that the actual test results are recorded in
the test logs.

• The SQA representative will verify that all changes to the test cases (including the
addition of new cases) are documented in support documentation change reports.

E-10

• The SQA representative will verify that all discrepancies between actual and expected
test results have been documented in a problem report and that all problem reports have
been completed and approved.

• The SQA representative will produce the Test Completion Review Report signifying
approval the completion of the integration process.

E.4.4.4 Transition Criteria

The integration process is considered to be complete when all of the requirements-based and
structure-based test cases successfully run and all problem and action reports are completed.

E.5 Problem Reporting and Correction

One of the cornerstones of an effective software quality program is a systematic, disciplined
set of procedures for problem reporting and correction. These procedures ensure that all
problems are documented, that problem status at any given time can be readily determined, and
that all changes to documentation and code resulting from problem correction follow established
configuration control procedures. The problem reporting and correction procedures to be used on
the GCS project are outlined in this section, and a more detailed description is given in the
Software Configuration Management Plan.

For the purposes of developing an efficient problem and change reporting system, the GCS
project life cycle data has been divided into three different categories: development products
(shown in Table E.1); support documentation (shown in Table E.2); and records, results, and
reports (shown in Table E.3). The life cycle data in the development products and support
documentation categories are all under Control Category 1 (CC1) according to DO-178B; and,
the records, results, and reports are under CC2. A unique problem and change reporting system
has been established for each category under CC1. The problem reporting system for the
development products requires the documentation of more information (to aid in the data analysis
for the experiment objectives of the project) than for the support documentation. There is no
formal change reporting system for the CC2 items.

Table E.1. CC1 Development Products

Design Description

Source Code
Executable Object Code

E-11

Table E.2. CC1 Support Documentation

Plan for Software Aspects of Certification
Software Development Plan

Software Requirements Standards
Software Design Standards
Software Code Standards

Software Accomplishment Summary
Software Verification Plan

Software Verification Cases and Procedures
Software Quality Assurance Plan

Software Configuration Management Plan

Software Life Cycle Environment Configuration Index
Software Configuration Index
Software Requirements Data

Table E.3. CC2 Records, Results, and Reports

Software Verification Results
Software Quality Assurance Records

Problem Reports
Software Configuration Management Records

For the development products, a two-form problem and action reporting system will be used.

The GCS Problem Report (PR) and Action Report (AR) forms, shown in Figures E.2 and E.3,
respectively, will be used to document any problems and subsequent changes to the development
products that arise during the development of the GCS implementations. A separate set of PRs
and ARs will be kept for each implementation.

In general, the person who identifies a problem is responsible for initiating a problem report.
The problem report must be given to the SQA representative who will assign a number to it and
assign at least one project member to examine it. Each project member assigned to examine the
problem report will generate an action report describing required change(s) or why no change is
required. In cases where significant changes are made (e.g., more than 20 lines of source code
are changed), the system analyst will be required to review and approve the change. The
approval of the SQA representative is needed to complete each problem report. When the
resulting change has been approved by the SQA representative, the new version of the
development product will be placed in the configuration management system. All problem
reports are turned over to the SQA representative for approval, but the configuration manager will
store the original reports. For more details on problem reporting and correction see the Software
Configuration Management Plan.

E-12

AR#

Reg
res

sio
n

Othe
r

10. Total # of Changes:

13. SQA Signature & Date12. Initiator Signature & Date

8. Test Case Identification:

7. Artifact Identification:
Design Description
Source Code Other

6. Description of Problem:

4. Initiator & Role:
page 1 of ____GCS Problem Report

1. PR #: 2. Planet: 3. Discovery Date:

5. Activity at Discovery:

Rea
din

g
Sp

ec
ifi

ca
tio

n

Rea
din

g C
od

e

Design
Code
Unit Testing

Subframe Testing
Frame Testing

Functional
Structural

Test
 R

ea
din

ess

Rev
iew

Top-Level Simulator
Integration Testing

Development
Phases

Activity

Test
 C

om
ple

tio
n

Rev
iew

Desi
gn

 R
ev

iew
Cod

e R
ev

iew

Test
 C

ase

Crea
tio

n
Test

 C
ase

Exe
cu

tio
n

9. History Log:

Date To Date From Person Comments

11. Total # of No Changes:

Executable Object Code

Support Documentation

Figure E.2. GCS Problem Report Form

E-13

5. Artifact Identification:

6. Description of Action:

4. Respondent & Role:
page 1 of ____GCS Action Report

1. AR #: 2. Planet: 3. Date of Action:

7. Was this action related to another action(s)? Yes AR#(s)

No

I don't know

Support DocumentationDesign Description

Executable Object Code
OtherSource Code

Figure E.3. GCS Action Report Form

E-14

For support documentation, a Support Documentation Change Report (SDCR) form shown in
Figure E.4 is used. A separate set of SDCRs will be generated for each support document. The
SQA representative will log and assign a number to all SDCRs. Approval of the SQA
representative is needed to complete the SDCR. The configuration manager will keep the
original SDCR forms for all support documents.

Support Documentation Change Report page 1 of

1. Configuration Item: 2. Date: 3. Modification #:

4. Part of Configuration Item Affected:

5. Reason for Modification:

6. Modification

7. SQA Signature & Date:

Figure E.4. Support Documentation Change Report Form

The SQA representative will keep status logs to track all change reports and ensure that all are

approved before entering the next development phase. These logs include the report number, the
date it was assigned, the name of the assignee, the date it was returned, and date the SQA
representative approved the report. Figure E.5 shows the form used for the status logs for the
problem and action reports, and Figure E.6 shows the form of the status logs for the SDCRs.

E-15

Problem Reports Assigned for Action

Implementation: ________________________

PR

Date

Assigned

Assigned to:

Date
Received

(by
Project
Leader)

Date
Approved
(by SQA)

of
Action
Report

s

Comments

Figure E.5. Status Log for Problem Reports

Support Documentation Change Reports Assigned for Action

Configuration Item: _______________________________

SDCR

Date

Assigned

Assigned to:

Date
Received

(by Project
Leader)

Date
Approved
(by SQA)

Comments

Figure E.6. Status Log for Support Documentation Change Reports

E.6 Configuration Management

The Software Configuration Management Plan outlines the procedures to be followed to
control access and changes to documents. The configuration management procedures are
supported by Digital Equipment Corporation's Code Management System (CMS). CMS allows
one to define various libraries, each of which contains all versions of the documents within that
library that can be easily retrieved. The Software Configuration Management Plan outlines the

E-16

access and change authorizations for the documents within each library and contains a list of the
configuration labels for all documents to be placed within the various libraries.

Specific users can be authorized to access but not change the documents within a library while
other users can be authorized to make changes as well. Change control will be achieved by
authorizing only the SQA representative and the configuration manager to reserve and replace
documents, allowing new versions of documents to be placed under configuration control. Once
a document has been placed under configuration control, there must be a change report that has
been logged by the SQA representative before any item can be reserved from the CMS libraries;
that is, no changes can be made to any item under configuration control unless a change has been
authorized by the SQA representative.

As the small scale of the project permits easy communication, only two audits of the
configuration are planned. The first is a conformity review to ensure that all elements of the
project are of the proper release prior to review by the certification authority. The second audit
has a similar purpose and will be held at the end of the project to ensure that all changes
requested by the certification authority have been completed. Results of the audits will become
part of the Software Quality Assurance Records. Additional audits may be requested by the
configuration manager or by the SQA representative. See also the Software Configuration
Management Plan.

E.7 SQA Records

The SQA records for the GCS project consist of the status logs for all of the change reports for
the project’s life cycle data and reports from reviews that are held during each of the development
processes. There will be an SQA report at the closure of each development process. All reports
become part of the Software Quality Assurance Records. The basic form of all the reports is an
introduction followed by the overview of the review sessions and any problem reports that are
issued. Below is a brief synopsis of each report. Each report documents the SQA approval for a
particular stage of the implementation's development, and contains an acceptance statement
signed by the SQA representative as part of the introductory comments.

• Design Review Report

The Design Review Report is the formal acceptance of the design, signifying that the design
process has ended and the coding process can begin. This report is generated when all
problem reports and action items generated during the design reviews and any subsequent
investigations have been closed.

• Code Review Report

The Code Review Report is issued when all problem reports and action items generated
during code reviews and any subsequent investigations have been closed, including any
problem reports and action items for the design. This report is the formal acceptance of the
code and indicates the inception of the integration process.

• Test Readiness Review Requirements-based Testing
This report records that all test cases necessary for requirements-based testing at all levels
(functional unit, subframe, frame, and trajectory) have been developed and are recorded in
the Requirements Traceability Matrix. The requirements-based testing can be begin after
approval of the test cases.

E-17

• Test Completion Review Report for Integration Testing
This report is issued when SQA representative has determined that all verification procedures
have been adhered to, all problem reports and action items initiated through requirements-
based and structure-based testing have been closed, and all tests have successfully completed.

E.8 Software Conformity Review

The SQA representative will conduct a software conformity review of all project life cycle
documentation prior to delivery to the project manager for submission for certification. A list of
project documents that will be reviewed is contained in the Preface to this and all documents.
The conformity review will meet the following objectives:

• ensure that all planned life cycle process activities have been completed,

• check the traceability of the software requirements through the design, code, and test cases,

• ensure that all life cycle data complies with the plans and standards and is properly controlled
in compliance with DO-178B,

• ensure that all problem reports and support documentation change reports have been
completed,

• ensure that all deviations from plans and standards have been approved and recorded, and

• check that the executable object code to be delivered can be regenerated from the archived
source code.

E.9 Supplier Controls

All individuals working on the GCS project fall under the jurisdiction of this SQA plan. All
project participants must use the processes and tools delineated in the full set of GCS
documentation. Therefore, there is no need to set up additional means to assure that sub-tier
suppliers processes and outputs will comply with this GCS SQA plan.

E.10 References

E.1 RTCA Special Committee 167. Software Considerations in Airborne Systems and
Equipment Certification. Technical Report RTCA/DO-178B, Radio Technical
Commission for Aeronautics, December 1992.

E.2 George B. Finelli. Results of software error-data experiments. In AIAA/AHS/ASEE
Aircraft Design, Systems and Operations Conference, Atlanta, GA, September 1988.

E.3 Anita M. Shagnea and Janet R. Dunham. GCS Development Specification Review
Description. Technical report, Research Triangle Institute, Research Triangle Park, NC,
August 1990. Prepared under NASA Contract NAS1-17964; Task Assignment No. 8.

E.4 Thomas J. McCabe. A software complexity measure. IEEE Transactions on Software
Engineering, SE-2, No. 6:308-320, December 1976.

E.5 John Joseph Chilenski and Steven P. Miller. Applicability of Modified Condition/Decision
Coverage to Software Testing.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Technical Memorandum

 4. TITLE AND SUBTITLE
Guidance and Control Software Project Data - Volume 1: Planning
Documents

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Hayhurst, Kelly J. (Editor)

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19548

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 61
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT
The Guidance and Control Software (GCS) project was the last in a series of software reliability studies conducted at Langley Research Center between 1977
and 1994. The technical results of the GCS project were recorded after the experiment was completed. Some of the support documentation produced as part of
the experiment, however, is serving an unexpected role far beyond its original project context. Some of the software used as part of the GCS project was
developed to conform to the RTCA/DO-178B software standard, "Software Considerations in Airborne Systems and Equipment Certification," used in the civil
aviation industry. That standard requires extensive documentation throughout the software development life cycle, including plans, software requirements,
design and source code, verification cases and results, and configuration management and quality control data. The project documentation that includes this
information is open for public scrutiny without the legal or safety implications associated with comparable data from an avionics manufacturer. This public
availability has afforded an opportunity to use the GCS project documents for DO-178B training. This report provides a brief overview of the GCS project,
describes the 4-volume set of documents and the role they are playing in training, and includes the planning documents from the GCS project.

15. SUBJECT TERMS
Software engineering; Computer programming; Software reliability; DO-178B

18. NUMBER
 OF
 PAGES

164
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

457280.02.07.07.06.02

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2008-215550

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
12 - 200801-

